Passive elastic behavior of arterial wall remains difficult to model. Although phenomenological and structural models exist, the question of how the three-dimensional network structure of the collagen in the artery determines its mechanical properties is still open. A model is presented that incorporates a collagen network as well as the noncollagenous material that comprise the artery. The collagen architecture is represented as a network of interconnected fibers, and a neo-Hookean constitutive equation is used to describe the contribution of the noncollagenous matrix. The model is multiscale in that volume-averaging theory is applied to the collagen network, and it is structural in that parameters of the microstructure of the collagen network were considered instead of a macroscopic constitutive law. The computational results provided a good fit to published experimental data for decellularized porcine carotid arteries. The model predicted increased circumferential compliance for increased axial stretch, consistent with previously published reports, and a relatively small sensitivity to open angle. Even at large extensions, the model predicted that the noncollagenous matrix would be in compression, preventing collapse of the collagen network. The incorporation of fiber-fiber interactions led to an accurate model of artery wall behavior with relatively few parameters. The counterintuitive result that the noncollagenous component is in compression during extension and inflation of the tissue suggests that the collagen is important even at small strains, with the noncollagenous components supporting the network, but not resisting the load directly. More accurate representation of the microstructure of the artery wall is needed to explore this issue further.

1.
Gasser
,
T. C.
,
Schulze-Bauer
,
C. A.
, and
Holzapfel
,
G. A.
, 2002, “
A Three-Dimensional Finite Element Model for Arterial Clamping
,”
J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
355
363
.
2.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Gasser
,
T. C.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
,”
J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
166
180
.
3.
Wuyts
,
F. L.
,
Vanhuyse
,
V. J.
, and
Langewouters
,
G. J.
, 1995, “
Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model
,”
Phys. Med. Biol.
0031-9155,
40
(
10
), pp.
1577
1597
.
4.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1984, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
0021-9290,
17
(
1
), pp.
35
40
.
5.
Langewouters
,
G. J.
,
Wesseling
,
K. H.
, and
Goedhard
,
W. J.
, 1984, “
The Static Elastic Properties of 45 Human Thoracic and 20 Abdominal Aortas in Vitro and the Parameters of a New Model
,”
J. Biomech.
0021-9290,
17
(
6
), pp.
425
435
.
6.
Weizsacker
,
H. W.
,
Lambert
,
H.
, and
Pascale
,
K.
, 1983, “
Analysis of the Passive Mechanical Properties of Rat Carotid Arteries
,”
J. Biomech.
0021-9290,
16
(
9
), pp.
703
715
.
7.
Dobrin
,
P. B.
, 1986, “
Biaxial Anisotropy of Dog Carotid Artery: Estimation of Circumferential Elastic Modulus
,”
J. Biomech.
0021-9290,
19
(
5
), pp.
351
358
.
8.
Vaishnav
,
R. N.
,
Young
,
J. T.
, and
Patel
,
D. J.
, 1973, “
Distribution of Stresses and of Strain-Energy Density Through the Wall Thickness in a Canine Aortic Segment
,”
Circ. Res.
0009-7330,
32
(
5
), pp.
577
583
.
9.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol.
0002-9513,
237
(
5
), pp.
H620
H631
.
10.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II–A Structural Constitutive Model
,”
J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
11.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
12.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
(
3
), pp.
441
463
.
13.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
494
503
.
14.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
(
7
), pp.
989
1000
.
15.
Gasser
,
C. T.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modeling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
Journal of the Royal Society Interface
,
3
(
6
), pp.
15
35
.
16.
von Maltzahn
,
W. W.
,
Besdo
,
D.
, and
Wiemer
,
W.
, 1981, “
Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model
,”
J. Biomech.
0021-9290,
14
(
6
), pp.
389
397
.
17.
Demiray
,
H.
, and
Vito
,
R. P.
, 1991, “
A Layered Cylindrical Shell Model for an Aorta
,”
Int. J. Eng. Sci.
0020-7225,
29
(
1
), pp.
47
54
.
18.
Humphrey
,
J. D.
, 1995, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
0278-940X,
23
(
1–2
), pp.
1
162
.
19.
Humphrey
,
J. D.
, 1999, “
An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics
,”
J. Biomech. Eng.
0148-0731,
121
(
2
), pp.
259
262
.
20.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models 1995-2002
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
413
439
.
21.
Dingemans
,
K. P.
,
Jansen
,
N.
, and
Becker
,
A. E.
, 1981, “
Ultrastructure of the Normal Human Aortic Media
,”
Virchows Arch. A: Pathol. Anat. Histol.
0340-1227,
392
(
2
), pp.
199
216
.
22.
Clark
,
J. M.
, and
Glagov
,
S.
, 1985, “
Transmural Organization of the Arterial Media, the Lamellar Unit Revisited
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
1
), pp.
19
34
.
23.
Snowhill
,
P. B.
,
Foran
,
D. J.
, and
Silver
,
F. H.
, 2004, “
A Mechanical Model of Porcine Vascular Tissues—Part I: Determination of Macromolecular Component Arrangement and Volume Fractions
,”
Cardiovascular Engineering: An International Journal
,
4
(
4
), pp.
281
294
.
24.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2004, “
Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
152
166
.
25.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2006, “
Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
259
270
.
26.
Agoram
,
B.
, and
Barocas
,
V. H.
, 2001, “
Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents
,”
J. Biomech. Eng.
0148-0731,
123
(
4
), pp.
362
369
.
27.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2007, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
J. Biomech. Eng.
0148-0731,
129
, pp.
137
147
.
28.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
, 2007, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
2981
2990
.
29.
Hudetz
,
A. G.
,
Mark
,
G.
, and
Kovach
,
A. G. B.
, 1980, “
The Effect of Smooth Muscle Activation on the Mechanical Properties of Pig Carotid Arteries
,”
Ann. Endocrinol. (Paris)
0003-4266,
56
(
3
), pp.
263
273
.
30.
Rachev
,
A.
, and
Hayashi
,
K.
, 1999, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
0090-6964,
27
(
4
), pp.
459
468
.
31.
Zulliger
,
M. A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
, 2004, “
A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
(
3
), pp.
H1335
H1343
.
32.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
264
275
.
33.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
, 1968, “
Compressibility of the Arterial Wall
,”
Circ. Res.
0009-7330,
23
(
1
), pp.
61
68
.
34.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
J. Biomech. Eng.
0148-0731,
108
(
2
), pp.
189
192
.
35.
Gleason
,
R. L.
,
Hu
,
J. J.
, and
Humphrey
,
J. D.
, 2004, “
Building a Functional Artery: Issues From the Perspective of Mechanics
,”
Front. Biosci.
1093-4715,
9
, pp.
2045
2055
.
36.
Stergiopulos
,
N.
,
Vulliemoz
,
S.
, and
Rachev
,
A.
, 2001, “
Assessing the Homogeneity of the Elastic Properties and Composition of the Pig Aortic Media
,”
J. Vasc. Res.
1018-1172,
38
(
3
), pp.
237
246
.
37.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
North-Holland
, Amsterdam, The Netherlands.
38.
Drew
,
D. A.
, 1971, “
Averaged Field Equations for Two-Phase Media
,”
Stud. Appl. Math.
0022-2526,
L
(
2
), pp.
133
166
.
39.
Oda
,
M.
, and
Iwashita
,
A. A.
, 1999,
Mechanics of Granular Materials
,
Brookfield
, Rotterdam, The Netherlands.
40.
Whitaker
,
S.
, 1986, “
Flow in Porous Media I: A Theoretical Derivation of Darcy’s Law
,”
Transp. Porous Media
0169-3913,
1
, pp.
3
25
.
41.
Crapiste
,
G. H.
,
Rotstein
,
E.
, and
Whitaker
,
S.
, 1986, “
A General Closure Scheme for the Method of Volume Averaging
,”
Chem. Eng. Sci.
0009-2509,
41
(
2
), pp.
227
235
.
42.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
, New York, NY.
43.
Roy
,
S.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
, 2005, “
Biomechanical Properties of Decellularized Porcine Common Carotid Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
(
4
), pp.
H1567
H1576
.
44.
Finlay
,
H. M.
,
Whittaker
,
P.
, and
Canham
,
P. B.
, 1998, “
Collagen Organization in the Branching Region of Human Brain Arteries
,”
Stroke
0039-2499,
29
(
8
), pp.
1595
1601
.
45.
Merrilees
,
M. J.
,
Tiang
,
K. M.
, and
Scott
,
L.
, 1987, “
Changes in Collagen Fibril Diameters Across Artery Walls Including a Correlation With Glycosaminoglycan Content
,”
Connect. Tissue Res.
0300-8207,
16
(
3
), pp.
237
257
.
46.
Pacheco
,
P. S.
, 1997,
Parallel Programming With MPI
,
Morgan Kaufmann Publishers, Inc.
, San Francisco, CA, USA.
47.
Takamizawa
,
K.
, and
Hayashi
,
K.
, 1987, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
0021-9290,
20
(
1
), pp.
7
17
.
48.
Silver
,
F. H.
,
Horvath
,
I.
, and
Foran
,
D. J.
, 2001, “
Viscoelasticity of the Vessel Wall: The Role of Collagen and Elastic Fibers
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
3
), pp.
279
301
.
49.
Freed
,
A. D.
, and
Doehring
,
T. C.
, 2005, “
Elastic Model for Crimped Collagen Fibrils
,”
J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
587
593
.
50.
Silver
,
F. H.
,
Kato
,
Y. P.
, and
Ohno
,
M.
, 1992, “
Analysis of Mammalian Connective Tissue: Relationship Between Hierarchical Structures and Mechanical Properties
,”
Journal of Long-Term Effects of Medical Implants
,
2
(
2–3
), pp.
165
198
.
51.
Simon
,
B. R.
,
Kaufmann
,
M. V.
, and
McAfee
,
M. A.
, 1993, “
Finite Element Models for Arterial Wall Mechanics
,”
J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
489
496
.
52.
Simon
,
B. R.
,
Kaufmann
,
M. V.
, and
McAfee
,
M. A.
, 1998, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
188
194
.
53.
Mow
,
V. C.
,
Kuei
,
S. C.
, and
Lai
,
W. M.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
54.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 1997, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
137
145
.
55.
Bank
,
A. J.
,
Wang
,
H.
, and
Holte
,
J. E.
, 1996, “
Contribution of Collagen, Elastin, and Smooth Muscle to In Vivo Human Brachial Artery Wall Stress and Elastic Modulus
,”
Circulation
0009-7322,
94
(
12
), pp.
3263
3270
.
56.
Han
,
H. C.
, and
Fung
,
Y. C.
, 1996, “
Direct Measurement of Transverse Residual Strains in Aorta
,”
Am. J. Physiol.
0002-9513,
270
(
2/2
), pp.
H750
H759
.
57.
Criscione
,
J. C.
, 2004, “
A Constitutive Framework for Tubular Structures That Enables a Semi-Inverse Solution to Extension and Inflation
,”
J. Elast.
0374-3535,
77
, pp.
57
81
.
You do not currently have access to this content.