Abstract

Background: Knowledge of normal cardiac kinematics is important when attempting to understand the mechanisms that impair the contractile function of the heart during disease. The complex kinematics of the heart can be studied by inserting radiopaque markers in the cardiac wall and study the pumping heart with biplane cineradiography. In order to study the local strain, the bead array was developed where small radiopaque beads are inserted along three columns transmurally in the left ventricle. Method: This paper suggests a straightforward method for strain computation, based on polynomial least-squares fitting and tailored for combined marker and bead array analyses. Results: This polynomial method gives small errors for a realistic bead array on an analytical test case. The method delivers an explicit expression of the Lagrangian strain tensor as a polynomial function of the coordinates of material points in the reference configuration. The method suggested in this paper is validated with analytical strains on a deforming cylinder resembling the heart, compared to a previously suggested finite element method, and applied to in vivo ovine data. The errors in the estimated strain components are shown to remain unchanged on an analytical test case when evaluating the effects of one missing bead. In conclusion, the proposed strain computation method is accurate and robust, with errors smaller or comparable to the current gold standard when applied on an analytical test case.

1.
Ingels
, Jr.,
N. B.
,
Daughters
, 2nd.,
G. T.
,
Stinson
,
E. B.
, and
Alderman
,
E. L.
, 1975, “
Measurement of Midwall Myocardial Dynamics in Intact Man by Radiography of Surgically Implanted Markers
,”
Circulation
0009-7322,
52
(
5
), pp.
859
867
.
2.
Cheng
,
A.
,
Langer
,
F.
,
Rodriguez
,
F.
,
Criscione
,
J. C.
,
Daughters
,
G. T.
,
Miller
,
D. C.
, and
Ingels
, Jr.,
N. B.
, 2005, “
Transmural Cardiac Strains in the Lateral Wall of the Ovine Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
4
), pp.
H1546
H1556
.
3.
Cheng
,
A.
,
Langer
,
F.
,
Rodriguez
,
F.
,
Criscione
,
J. C.
,
Daughters
,
G. T.
,
Miller
,
D. C.
, and
Ingels
, Jr.,
N. B.
, 2005, “
Transmural Sheet Strains in the Lateral Wall of the Ovine Left Ventricle
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
(
3
), pp.
H1234
H1241
.
4.
Zerhouni
,
E. A.
,
Parish
,
D. M.
,
Rogers
,
W. J.
,
Yang
,
A.
, and
Shapiro
,
E. P.
, 1988, “
Human Heart: Tagging With MR Imaging—A Method for Noninvasive Assessment of Myocardial Motion
,”
Radiology
0033-8419,
169
(
1
), pp.
59
63
.
5.
Axel
,
L.
, and
Dougherty
,
L.
, 1989, “
Heart Wall Motion: Improved Method of Spatial Modulation of Magnetization for MR Imaging
,”
Radiology
0033-8419,
172
(
2
), pp.
349
350
.
6.
Young
,
A. A.
, and
Axel
,
L.
, 1992, “
Three-Dimensional Motion and Deformation of the Heart Wall: Estimation With Spatial Modulation of Magnetization—A Model-Based Approach
,”
Radiology
0033-8419,
185
(
1
), pp.
241
247
.
7.
Wedeen
,
V. J.
, 1992, “
Magnetic Resonance Imaging of Myocardial Kinematics: Technique to Detect, Localize, and Quantify the Strain Rates of the Active Human Myocardium
,”
Magn. Reson. Med.
0740-3194,
27
(
1
), pp.
52
67
.
8.
Pelc
,
N.
,
Herfkens
,
R.
, and
Pelc
,
L.
, 1992, “
3D Analysis of Myocardial Motion and Deformation With Phase Contrast Cine MRI
,”
Proc. SMRM
,
Society of Magnetic Resonance in Medicine
, Berlin, Germany, Vol.
1
, p.
18
.
9.
Wigström
,
L.
,
Sjöqvist
,
L.
, and
Wranne
,
B.
, 1996, “
Temporally Resolved 3D Phase-Contrast Imaging
,”
Magn. Reson. Med.
0740-3194,
36
(
5
), pp.
800
803
.
10.
Zhu
,
Y.
,
Drangova
,
M.
, and
Pelc
,
N. J.
, 1997, “
Estimation of Deformation Gradient and Strain From Cine-PC Velocity Data
,”
IEEE Trans. Med. Imaging
0278-0062,
16
(
6
), pp.
840
851
.
11.
Zhu
,
Y.
, and
Pelc
,
N. J.
, 1999, “
A Spatiotemporal Model of Cyclic Kinematics and Its Application to Analyzing Nonrigid Motion With MR Velocity Images
,”
IEEE Trans. Med. Imaging
0278-0062,
18
(
7
), pp.
557
569
.
12.
Gilson
,
W. D.
,
Yang
,
Z.
,
French
,
B. A.
, and
Epstein
,
F. H.
, 2005, “
Measurement of Myocardial Mechanics in Mice Before and After Infarction Using Multislice Displacement-Encoded MRI With 3D Motion Encoding
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
3
), pp.
H1491
H1497
.
13.
Selskog
,
P.
,
Heiberg
,
E.
,
Ebbers
,
T.
,
Wigström
,
L.
, and
Karlsson
,
M.
, 2002, “
Kinematics of the Heart: Strain-Rate Imaging From Time-Resolved Three-Dimensional Phase Contrast MRI
,”
IEEE Trans. Med. Imaging
0278-0062,
21
(
9
), pp.
1105
1109
.
14.
Deng
,
X.
, and
Denney
,
T. S. J.
, 2004, “
Three-Dimensional Myocardial Strain Reconstruction From Tagged MRI Using a Cylindrical b-Spline Model
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
7
), pp.
861
867
.
15.
Cupps
,
B. P.
,
Pomerantz
,
B. J.
,
Krock
,
M. D.
,
Villard
,
J.
,
Rogers
,
J.
,
Moazami
,
N.
, and
Pasque
,
M. K.
, 2005, “
Principal Strain Orientation in the Normal Human Left Ventricle
,”
Ann. Thorac. Surg.
0003-4975,
79
(
4
), pp.
1338
1343
.
16.
Waldman
,
L. K.
,
Fung
,
Y. C.
, and
Covell
,
J. W.
, 1985, “
Transmural Myocardial Deformation in the Canine Left Ventricle: Normal In Vivo Three-Dimensional Finite Strains
,”
Circ. Res.
0009-7330,
57
(
1
), pp.
152
163
.
17.
McCulloch
,
A. D.
, and
Omens
,
J. H.
, 1991, “
Non-Homogeneous Analysis of Three-Dimensional Transmural Finite Deformation in Canine Ventricular Myocardium
,”
J. Biomech.
0021-9290,
24
(
7
), pp.
539
548
.
18.
Ashikaga
,
H.
,
Criscione
,
J. C.
,
Omens
,
J. H.
,
Covell
,
J. W.
, and
Ingels
, Jr.,
N. B.
, 2004, “
Transmural Left Ventricular Mechanics Underlying Torsional Recoil During Relaxation
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
2
), pp.
H640
H647
.
19.
Rodriguez
,
F.
,
Langer
,
F.
,
Harrington
,
K. B.
,
Tibayan
,
F. A.
,
Zasio
,
M. K.
,
Cheng
,
A.
,
Liang
,
D.
,
Daughters
,
G. T.
,
Covell
,
J. W.
,
Criscione
,
J. C.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
, 2004, “
Importance of Mitral Valve Second-Order Chordae for Left Ventricular Geometry, Wall Thickening Mechanics, and Global Systolic Function
,”
Circulation
0009-7322,
110
(
11 Suppl 1
), pp.
II115
II122
.
20.
Wiseman
,
M. D.
,
Hunter
,
W. C.
, and
Douglas
,
A. S.
, 1987, “
Errors in Calculation of Local Myocardial Strain Derived From Positions of 4 Implanted Markers
,”
Federation Proc.
,
Federation of American Societies for Experimental Biology
, Bethesda, MD, Vol.
46
, p.
836
.
21.
Waldman
,
L. K.
,
Nosan
,
D.
,
Villarreal
,
F.
, and
Covell
,
J. W.
, 1988, “
Relation Between Transmural Deformation and Local Myofiber Direction in Canine Left Ventricle
,”
Circ. Res.
0009-7330,
63
(
3
), pp.
550
562
.
22.
Douglas
,
A. S.
,
Hunter
,
W. C.
, and
Wiseman
,
M. D.
, 1990, “
Inhomogeneous Deformation as a Source of Error in Strain Measurements Derived From Implanted Markers in the Canine Left Ventricle
,”
J. Biomech.
0021-9290,
23
(
4
), pp.
331
341
.
23.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
,
Longman Mathematical Texts
, Longman, London.
24.
Daughters
,
G. T.
,
Sanders
,
W. J.
,
Miller
,
D. C.
,
Schwarzkopf
,
A.
,
Mead
,
C. W.
, and
Ingels
, Jr.,
N. B.
, 1988, “
A Comparison of Two Analytical Systems for 3-D Reconstruction From Biplane Videoradiograms
,”
IEEE Computers in Cardiology
,
IEEE
, New York, Vol.
15
, pp.
79
82
.
25.
Harrington
,
K. B.
,
Rodriguez
,
F.
,
Cheng
,
A.
,
Langer
,
F.
,
Ashikaga
,
H.
,
Daughters
,
G. T.
,
Criscione
,
J. C.
,
Ingels
,
N. B.
, and
Miller
,
D. C.
, 2005, “
Direct Measurement of Transmural Laminar Architecture in the Anterolateral Wall of the Ovine Left Ventricle: New Implications for Wall Thickening Mechanics
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
288
(
3
), pp.
H1324
H1330
.
26.
Costa
,
K. D.
,
Takayama
,
Y.
,
McCulloch
,
A. D.
, and
Covell
,
J. W.
, 1999, “
Laminar Fiber Architecture and Three-Dimensional Systolic Mechanics in Canine Ventricular Myocardium
,”
Am. J. Physiol.
0002-9513,
276
(
2 Pt 2
), pp.
H595
H607
.
You do not currently have access to this content.