The use of numerical simulation as a means to predict the outcome of transurethral microwave thermotherapy (TUMT) is set forth in detail. The simulation was carried out as a case study of a specific TUMT procedure. The selection of the case study was based on the availability of extensive medical records which documented an extraordinary application of TUMT. Predictions were made of the time-varying temperature patterns within the prostate, the bladder, the sphincter, the pelvic floor, and the fat and connective tissue which envelop these organs. These temperature patterns provided the basis of maps which highlighted those locations where necrosis occurred. An injury integral was used to predict the extent of the necrotic tissue produced by the therapy. It was found that, for the specific case being considered, necrosis occurred not only within the prostate but also extended to the neck of the bladder and to the fatty tissue. A special feature of the simulation was the accounting of the liquid-to-vapor phase change of the interstitial water. The vapor generated by the phase change is believed to significantly enlarge the region of necrosis. By the same token, the vapor pressure is expected to cause motion of the high-temperature liquid to deep-tissue regions. The damage predicted by the numerical simulation was compared, in detail, with post-operative medical examinations and found to be corroborated.

1.
Djavan
,
B.
, 2000, “
Is Transurethral Microwave Thermotherapy an Alternative to Medical Therapy for Patients with Benign Prostatic Hyperplasia?
,”
Tech. Urol.
1079-3259,
6
, pp.
300
306
.
2.
Francisca
,
E.
,
d’Ancona
,
F.
,
Hendriks
,
J.
,
Kiemeney
,
L.
,
Debruyne
,
F.
, and
de la Rosette
,
J.
, 2000, “
A Randomized Study Comparing High-Energy TUMT to TURP: Quality-of-Life Results
,”
Eur. Urol.
0302-2838,
38
, pp.
569
575
.
3.
Zlotta
,
A.
, and
Djavan
,
B.
, 2002, “Minimally Invasive Therapies for Benign Prostatic Hyperplasia in the New Millennium: Long-Term Data,” Current Opinion in Urology, 12, pp. 7–14.
4.
Charny
,
C.
, 1992, “
Mathematical Models of Bioheat Transfer
,”
Advances in Heat Transfer, Bioengineering Heat Transfer
,
Y.
Cho
,
J.
Hartnett
, and
T.
Irvine
, eds.,
Academic
, Boston, MA, Vol.
22
.
5.
Diller
,
K.
,
Valvano
,
J.
, and
Pearce
,
J.
, 2000, “
Bioheat Transfer
,”
CRC Handbook of Thermal Engineering
,
F.
Kreith
, ed.,
CRC Press
, Boca Raton, FL.
6.
Pennes
,
H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
0021-8987,
85
, pp.
5
34
.
7.
Persson
,
B.
,
Friberg
,
B.
,
Olsrud
,
J.
,
Rioseco
,
J.
, and
Ahlgren
,
M.
, 1998, “Numerical Calculations of Temperature Distributions Resulting from Intracavity Heating of the Uterus,” Gynaecological Endoscopy, 7, pp. 203–209.
8.
Baldwin
,
S.
,
Pelman
,
A.
, and
Bert
,
J.
, 2001, “
A Heat Transfer Model of Thermal Balloon Endometrial Ablation
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
1009
1018
.
9.
Reinders
,
D.
,
Baldwin
,
S.
, and
Bert
,
J.
, 2003, “
Endometrial Thermal Balloon Ablation Using a High Temperature, Pulsed System: A Mathematical Model
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
841
851
.
10.
He
,
X.
, and
Bischof
,
J.
, 2003, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
0278-940X,
31
, pp.
355
421
.
11.
He
,
X.
,
McGee
,
S.
,
Coad
,
J.
,
Schmidlin
,
F.
,
Iaizzo
,
P.
,
Swanlund
,
D.
,
Kulge
,
S.
,
Rudie
,
E.
, and
Bischof
,
J.
, 2004, “
Investigation of the Thermal Tissue Injury Behavior in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperthermia
0265-6736,
20
, pp.
567
593
.
12.
Jiang
,
S.
,
Ma
,
N.
,
Li
,
H.
, and
Zhang
,
X.
, 2002, “
Effects of Thermal Properties and Geometric Dimensions on Skin Burn Injuries
,”
Burns
0305-4179,
28
, pp.
713
717
.
13.
Zhang
,
J.
,
Sandison
,
G.
,
Murthy
,
J.
, and
Xu
,
L.
, 2005, “
Numerical Simulation for Heat Transfer in Prostate Cancer Cryosurgery
,”
J. Biomech. Eng.
0148-0731,
127
, pp.
279
293
.
14.
Xu
,
L.
,
Rudie
,
E.
, and
Holmes
,
K.
, 1993, “
Transurethral Thermal Therapy (T3) for the Treatment of Benign Prostate Hyperplasia (BPH) in the Canine: Analysis Using Pennes Bioheat Equation
,”
Advances in Bioheat and Mass Transfer: Microscale Analysis of Thermal Injury Processes, Instrumentation, Modeling, and Clinical Applications
,
American Society of Mechanical Engineers
, New York, Vol.
HTD 268
.
15.
Yuan
,
D.
,
Valvano
,
J.
,
Rudie
,
E.
, and
Xu
,
L.
, 1995, “
2D Finite Difference Modeling of Microwave Heating in the Prostate
,”
Advances in Heat and Mass Transfer in Biotechnology
,
American Society of Mechanical Engineers
, New York, Vol.
HTD 322/BED 32
.
16.
Ramadhyani
,
S.
, and
Rudie
,
E.
, 2003, “
A Mathematical Model To Predict Intra-Prostatic Temperatures and Tissue Necrosis During Transurethral Microwave Thermal Ablation of the Prostate
,”
Proceedings ASME Summer Bioengineering Conference
, June 25–27, Key Biscayne, FL.
17.
Shamsundar
,
N.
, and
Sparrow
,
E.
, 1975, “
Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Method
,”
J. Heat Transfer
0022-1481,
97
, pp.
333
340
.
18.
Duck
,
F.
, 1990,
Physical Properties of Tissue, A Comprehensive Reference Book
,
Academic
, London.
19.
Spells
,
K.
, 1960, “
The Thermal Conductivity of Some Biological Fluids
,”
Phys. Med. Biol.
0031-9155,
5
, pp.
139
153
.
20.
Welch
,
A.
, 1984, “
The Thermal Response of Laser Irradiated Tissue
,”
IEEE J. Quantum Electron.
0018-9197,
QE-20
, pp.
1471
1481
.
21.
Takata
,
A.
,
Zaneveld
,
L.
, and
Richter
,
W.
, 1977, “
Laser-Induced Thermal Damage in Skin
,” USAF School Aerospace Med. Brooks AFB, TX, Rep. No. SAM-TR-77-38.
22.
Poppendiek
,
H.
,
Randall
,
R.
,
Breeden
,
J.
,
Chambers
,
J.
, and
Murphy
,
J.
, 1966, “
Thermal Conductivity Measurements and Predictions for Biological Fluids and Tissues
,”
Cryobiology
0011-2240,
3
, pp.
318
327
.
23.
R.
West
,
CRC Handbook of Chemistry and Physics
, 1974, 55th ed.,
CRC Press
, Cleveland, OH.
24.
Bowman
,
H.
, 1981, “
Heat Transfer and Thermal Dosimetry
,”
J. Microwave Power
0022-2739,
16
, pp.
121
133
.
25.
Cooper
,
T.
, and
Trezek
,
G.
, 1971, “
Correlation of Thermal Properties of Some Human Tissue with Water Content
,”
Aerosp. Med.
0001-9402,
42
, pp.
24
27
.
26.
Henriques
,
F.
, and
Moritz
,
A.
, 1947, “
Studies of Thermal Injury—I: The Conduction of Heat to and Through the Skin and the Temperatures Attained Therein. A Theoretical and Experimental Investigation
,”
Am. J. Pathol.
0002-9440,
23
, pp.
531
549
.
27.
Diller
,
K.
, 1992, “
Modeling of Bioheat Transfer Processes at High and Low Temperatures
,”
Advances in Heat Transfer, Bioengineering Heat Transfer
,
Y.
Cho
,
J.
Hartnett
, and
T.
Irvine
, eds.,
Academic
, Boston, MA, Vol.
22
.
28.
Bolmsjo
,
M.
,
Schelin
,
S.
,
Wagrell
,
L.
,
Larson
,
T.
,
De La Rosette
,
J.
, and
Mattiasson
,
A.
, 2000, “
Cell-Kill Modeling of Microwave Thermotherapy for Treatment of Benign Prostate Hyperplasia
,”
J. Endourol
0892-7790,
14
, pp.
627
635
.
29.
Landry
,
J.
, and
Marceau
,
N.
, 1978, “
Rate-Limiting Events in Hyperthermic Cell Killing
,”
Radiat. Res.
0033-7587,
75
, pp.
573
585
.
30.
Jung
,
H.
, 1986, “
A Generalized Concept for Cell Killing By Heat
,”
Radiat. Res.
0033-7587,
106
, pp.
56
72
.
31.
Andersson
,
L.
,
Dahn
,
I.
,
Nelson
,
C.
, and
Norgren
,
A.
, 1967, “
Method for Measuring Prostatic Blood Flow with Xenon133 in the Dog
,”
Invest. Urol.
0021-0005,
5
, pp.
140
148
.
32.
Ramadhyani
,
S.
,
Flachman
,
J.
, and
Rudie
,
E.
, “
Thermodynamic Modeling of Tissue Treatment Procedure
,” US Patent No. 6,312,391.
33.
Carter
,
S.
,
Patel
,
F.
,
Reddy
,
P.
,
Royer
,
R.
, and
Ramsay
,
J.
, 1991, “
Single-Session Transurethral Microwave Thermotherapy for the Treatment of Benign Prostatic Obstruction
,”
J. Endourol
0892-7790,
5
, pp.
137
144
.
34.
Eliasson
,
T.
,
Abramsson
,
L.
, and
Damber
,
J.
, 1998, “
Importance of Thermal Dose and Antenna Location in Transurethral Microwave Thermotherapy for Benign Prostate Hyperplasia
,”
J. Endourol
0892-7790,
12
, pp.
581
589
.
35.
Bhowmick
,
P.
,
Coad
,
J.
,
Bhowmick
,
S.
,
Pryor
,
J.
,
Larson
,
T.
,
De La Rosette
,
J.
, and
Bischof
,
J.
, 2004, “
In Vitro Assessment of the Efficacy of Thermal Therapy in Human Benign Prostate Hyperplasia
,”
Int. J. Hyperthermia
0265-6736,
20
, pp.
421
439
.
36.
Diederich
,
C.
, et al.
, 2000, “
Combination of Transurethral and Interstitial Ultrasound Applicators for High-Temperature Prostate Thermal Therapy
,”
Int. J. Hyperthermia
0265-6736,
16
, pp.
385
403
.
37.
Devonec
,
M.
,
Berger
,
N.
, and
Perrin
,
P.
, 1991, “
Transurethral Microwave Heating of the Prostate—Or From Hyperthermia to Thermotherapy
,”
J. Endourol
0892-7790,
5
, pp.
129
135
.
38.
Davydov
,
E.
,
Lubashevsky
,
I.
,
Milyaev
,
V.
, and
Musin
,
R.
, 2002, “
Nondiffusive Heat Propagation in Tissue Under Local Strong Heating
,”
Proc. SPIE
0277-786X,
4617
, pp.
236
244
.
You do not currently have access to this content.