Despite considerable documentation of the ability of normal bone to adapt to its mechanical environment, very little is known about the response of bone grafts or their substitutes to mechanical loading even though many bone defects are located in load-bearing sites. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on the mineralization of a tissue-engineered bone replacement and identify the tissue level stresses and strains associated with the applied loading. A novel subcutaneous implant system was designed capable of intermittent cyclic compression of tissue-engineered constructs in vivo. Mesenchymal stem cell-seeded polymeric scaffolds with 8 weeks of in vitro preculture were placed within the loading system and implanted subcutaneously in male Fisher rats. Constructs were subjected to 2 weeks of loading (3 treatments per week for 30min each, 13.3N at 1Hz) and harvested after 6 weeks of in vivo growth for histological examination and quantification of mineral content. Mineralization significantly increased by approximately threefold in the loaded constructs. The finite element method was used to predict tissue level stresses and strains within the construct resulting from the applied in vivo load. The largest principal strains in the polymer were distributed about a modal value of 0.24% with strains in the interstitial space being about five times greater. Von Mises stresses in the polymer were distributed about a modal value of 1.6MPa, while stresses in the interstitial tissue were about three orders of magnitude smaller. This research demonstrates the ability of controlled in vivo mechanical stimulation to enhance mineralized matrix production on a polymeric scaffold seeded with osteogenic cells and suggests that interactions with the local mechanical environment should be considered in the design of constructs for functional bone repair.

1.
Hung
,
C. T.
,
Mauck
,
R. L.
,
Wang
,
C. C.
,
Lima
,
E. G.
, and
Ateshian
,
G. A.
, 2004, “
A Paradigm for Functional Tissue Engineering of Articular Cartilage Via Applied Physiologic Deformational Loading
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
35
49
.
2.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
, 2002, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
0736-0266,
20
(
4
), pp.
842
848
.
3.
Altman
,
G. H.
,
Lu
,
H. H.
,
Horan
,
R. L.
,
Calabro
,
T.
,
Ryder
,
D.
,
Kaplan
,
D. L.
,
Stark
,
P.
,
Martin
,
I.
,
Richmond
,
J. C.
, and
Vunjak-Novakovic
,
G.
, 2002, “
Advanced Bioreactor with Controlled Application of Multi-Dimensional Strain for Tissue Engineering
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
6
), pp.
742
749
.
4.
Lin
,
V. S.
,
Lee
,
M. C.
,
O’Neal
,
S.
,
McKean
,
J.
, and
Sung
,
K. L.
, 1999, “
Ligament Tissue Engineering Using Synthetic Biodegradable Fiber Scaffolds
,”
Tissue Eng.
1076-3279,
5
(
5
), pp.
443
452
.
5.
Kim
,
B. S.
, and
Mooney
,
D. J.
, 2000, “
Scaffolds for Engineering Smooth Muscle under Cyclic Mechanical Strain Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
3
), pp.
210
215
.
6.
Powell
,
C. A.
,
Smiley
,
B. L.
,
Mills
,
J.
, and
Vandenburgh
,
H. H.
, 2002, “
Mechanical Stimulation Improves Tissue-Engineered Human Skeletal Muscle
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
283
(
5
), pp.
C1557
C1565
.
7.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
, 2000, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling in Vitro
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
351
362
.
8.
Wang
,
Y.
,
Uemura
,
T.
,
Dong
,
J.
,
Kojima
,
H.
,
Tanaka
,
J.
, and
Tateishi
,
T.
, 2003, “
Application of Perfusion Culture System Improves in Vitro and in Vivo Osteogenesis of Bone Marrow-Derived Osteoblastic Cells in Porous Ceramic Materials
,”
Tissue Eng.
1076-3279,
9
(
6
), pp.
1205
1214
.
9.
Bancroft
,
G. N.
,
Sikavitsas
,
V. I.
,
Van Den Dolder
,
J.
,
Sheffield
,
T. L.
,
Ambrose
,
C. G.
,
Jansen
,
J. A.
, and
Mikos
,
A. G.
, 2002, “
Fluid Flow Increases Mineralized Matrix Deposition in 3d Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
20
), pp.
12600
12605
.
10.
Cartmell
,
S. H.
,
Porter
,
B. D.
,
Garcia
,
A. J.
, and
Guldberg
,
R. E.
, 2003, “
Effects of Medium Perfusion Rate on Cell-Seeded Three-Dimensional Bone Constructs in Vitro
,”
Tissue Eng.
1076-3279,
9
(
6
), pp.
1197
1203
.
11.
Jones
,
D. B.
,
Broeckmann
,
E.
,
Pohl
,
T.
, and
Smith
,
E. L.
, 2003, “
Development of a Mechanical Testing and Loading System for Trabecular Bone Studies for Long Term Culture
,”
Eur. Cells Mater
1473-2262,
5
, pp.
48
60
.
12.
Mauney
,
J. R.
,
Sjostorm
,
S.
,
Blumberg
,
J.
,
Horan
,
R.
,
O’Leary
,
J. P.
,
Vunjak-Novakovic
,
G.
,
Volloch
,
V.
, and
Kaplan
,
D. L.
, 2004, “
Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds in Vitro
,”
Calcif. Tissue Int.
0171-967X,
74
(
5
), pp.
458
468
.
13.
Yang
,
Y.
,
Magnay
,
J. L.
,
Cooling
,
L.
, and
El
,
H. A.
, 2002, “
Development of a ‘Mechano-Active’ Scaffold for Tissue Engineering
,”
Biomaterials
0142-9612,
23
(
10
), pp.
2119
2126
.
14.
Klein-Nulend
,
J.
,
Roelofsen
,
J.
,
Semeins
,
C. M.
,
Bronckers
,
A. L.
, and
Burger
,
E. H.
, 1997, “
Mechanical Stimulation of Osteopontin Mrna Expression and Synthesis in Bone Cell Cultures
,”
J. Cell Physiol.
0021-9541,
170
(
2
), pp.
174
181
.
15.
Walboomers
,
X. F.
,
Elder
,
S. E.
,
Bumgardner
,
J. D.
, and
Jansen
,
J. A.
, 2006, “
Hydrodynamic Compression of Young and Adult Rat Osteoblast-Like Cells on Titanium Fiber Mesh
,”
J. Biomed. Mater. Res.
0021-9304,
76
(
1
), pp.
16
24
.
16.
Case
,
N. D.
,
Duty
,
A. O.
,
Ratcliffe
,
A.
,
Muller
,
R.
, and
Guldberg
,
R. E.
, 2003, “
Bone Formation on Tissue-Engineered Cartilage Constructs in Vivo: Effects of Chondrocyte Viability and Mechanical Loading
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
587
596
.
17.
Lin
,
A. S.
,
Barrows
,
T. H.
,
Cartmell
,
S. H.
, and
Guldberg
,
R. E.
, 2003, “
Microarchitectural and Mechanical Characterization of Oriented Porous Polymer Scaffolds
,”
Biomaterials
0142-9612,
24
(
3
), pp.
481
489
.
18.
Hildebrand
,
T.
,
Laib
,
A.
,
Muller
,
R.
,
Dequeker
,
J.
, and
Ruegsegger
,
P.
, 1999, “
Direct Three-Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus
,”
J. Bone Miner. Res.
0884-0431,
14
(
7
), pp.
1167
1174
.
19.
Hildebrand
,
T.
, and
Ruegsegger
,
P.
, 1997, “
A New Method for the Model-Independent Assessment of Thickness in Three-Dimensional Images
,”
J. Microsc.
0022-2720,
185
, pp.
67
75
.
20.
Kadiyala
,
S.
,
Jaiswal
,
N.
, and
Bruder
,
S. P.
, 1997, “
Culture-Expanded Bone Marrow-Derived Stem Cells Can Regenerate a Critical-Sized Bone Defect
,”
Tissue Eng.
1076-3279,
3
(
2
), pp.
173
185
.
21.
Guldberg
,
R. E.
,
Caldwell
,
N. J.
,
Guo
,
X. E.
,
Goulet
,
R. W.
,
Hollister
,
S. J.
, and
Goldstein
,
S. A.
, 1997, “
Mechanical Stimulation of Tissue Repair in the Hydraulic Bone Chamber
,”
J. Bone Miner. Res.
0884-0431,
12
(
8
), pp.
1295
1302
.
22.
Solchaga
,
L. A.
,
Gao
,
J.
,
Dennis
,
J. E.
,
Awadallah
,
A.
,
Lundberg
,
M.
,
Caplan
,
A. I.
, and
Goldberg
,
V. M.
, 2002, “
Treatment of Osteochondral Defects with Autologous Bone Marrow in a Hyaluronan-Based Delivery Vehicle
,”
Tissue Eng.
1076-3279,
8
(
2
), pp.
333
347
.
23.
Muller
,
R.
,
Van Campenhout
,
H.
,
Van Damme
,
B.
,
Van Der Perre
,
G.
,
Dequeker
,
J.
,
Hildebrand
,
T.
, and
Ruegsegger
,
P.
, 1998, “
Morphometric Analysis of Human Bone Biopsies: A Quantitative Structural Comparison of Histological Sections and Micro-Computed Tomography
,”
Bone (N.Y.)
8756-3282,
23
(
1
), pp.
59
66
.
24.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
, 1995, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
0021-9290,
28
(
1
), pp.
69
81
.
25.
Loboa
,
E. G.
,
Wren
,
T. A.
,
Beaupre
,
G. S.
, and
Carter
,
D. R.
, 2003, “
Mechanobiology of Soft Skeletal Tissue Differentiation-A Computational Approach of a Fiber-Reinforced Poroelastic Model Based on Homogeneous and Isotropic Simplifications
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
83
96
.
26.
Guldberg
,
R. E.
,
Hollister
,
S. J.
, and
Charras
,
G. T.
, 1998, “
The Accuracy of Digital Image-Based Finite Element Models
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
289
295
.
27.
Shea
,
L. D.
,
Wang
,
D.
,
Franceschi
,
R. T.
, and
Mooney
,
D. J.
, 2000, “
Engineered Bone Development from a Pre-Osteoblast Cell Line on Three-Dimensional Scaffolds
,”
Tissue Eng.
1076-3279,
6
(
6
), pp.
605
617
.
28.
Botchwey
,
E. A.
,
Pollack
,
S. R.
,
Levine
,
E. M.
, and
Laurencin
,
C. T.
, 2001, “
Bone Tissue Engineering in a Rotating Bioreactor Using a Microcarrier Matrix System
,”
J. Biomed. Mater. Res.
0021-9304,
55
(
2
), pp.
242
253
.
29.
Goldstein
,
A. S.
,
Juarez
,
T. M.
,
Helmke
,
C. D.
,
Gustin
,
M. C.
, and
Mikos
,
A. G.
, 2001, “
Effect of Convection on Osteoblastic Cell Growth and Function in Biodegradable Polymer Foam Scaffolds
,”
Biomaterials
0142-9612,
22
(
11
), pp.
1279
1288
.
30.
Cartmell
,
S.
,
Huynh
,
K.
,
Lin
,
A.
,
Nagaraja
,
S.
, and
Guldberg
,
R.
, 2004, “
Quantitative Microcomputed Tomography Analysis of Mineralization within Three-Dimensional Scaffolds in Vitro
,”
J. Biomed. Mater. Res.
0021-9304,
69
(
1
), pp.
97
104
.
31.
Moalli
,
M. R.
,
Caldwell
,
N. J.
,
Patil
,
P. V.
, and
Goldstein
,
S. A.
, 2000, “
An in Vivo Model for Investigations of Mechanical Signal Transduction in Trabecular Bone
,”
J. Bone Miner. Res.
0884-0431,
15
(
7
), pp.
1346
1353
.
32.
Moalli
,
M. R.
,
Wang
,
S.
,
Caldwell
,
N. J.
,
Patil
,
P. V.
, and
Maynard
,
C. R.
, 2001, “
Mechanical Stimulation Induces Pp125(Fak) and Pp60(Src) Activity in an in Vivo Model of Trabecular Bone Formation
,”
J. Appl. Physiol.
8750-7587,
91
(
2
), pp.
912
918
.
33.
Boo
,
J. S.
,
Yamada
,
Y.
,
Okazaki
,
Y.
,
Hibino
,
Y.
,
Okada
,
K.
,
Hata
,
K.
,
Yoshikawa
,
T.
,
Sugiura
,
Y.
, and
Ueda
,
M.
, 2002, “
Tissue-Engineered Bone Using Mesenchymal Stem Cells and a Biodegradable Scaffold
,”
J. Craniofac Surg.
1049-2275,
13
(
2
), pp.
231
243
.
34.
Kruyt
,
M. C.
,
De Bruijn
,
J. D.
,
Wilson
,
C. E.
,
Oner
,
F. C.
,
Van Blitterswijk
,
C. A.
,
Verbout
,
A. J.
, and
Dhert
,
W. J.
, 2003, “
Viable Osteogenic Cells Are Obligatory for Tissue-Engineered Ectopic Bone Formation in Goats
,”
Tissue Eng.
1076-3279,
9
(
2
), pp.
327
336
.
35.
Yoshikawa
,
T.
,
Ohgushi
,
H.
,
Akahane
,
M.
,
Tamai
,
S.
, and
Ichijima
,
K.
, 1998, “
Analysis of Gene Expression in Osteogenic Cultured Marrow/Hydroxyapatite Construct Implanted at Ectopic Sites: A Comparison with the Osteogenic Ability of Cancellous Bone
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
4
), pp.
568
573
.
36.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1988, “
Limitations of the Continuum Assumption in Cancellous Bone
,”
J. Biomech.
0021-9290,
21
(
4
), pp.
269
275
.
37.
Charras
,
G. T.
, and
Guldberg
,
R. E.
, 2000, “
Improving the Local Solution Accuracy of Large-Scale Digital Image-Based Finite Element Analyses
,”
J. Biomech.
0021-9290,
33
(
2
), pp.
255
259
.
38.
Rubin
,
C. T.
, and
Lanyon
,
L. E.
, 1984, “
Dynamic Strain Similarity in Vertebrates; An Alternative to Allometric Limb Bone Scaling
,”
J. Theor. Biol.
0022-5193,
107
(
2
), pp.
321
327
.
39.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
, 1996, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone (N.Y.)
8756-3282,
18
(
5
), pp.
405
410
.
40.
Turner
,
C. H.
,
Forwood
,
M. R.
,
Rho
,
J. Y.
, and
Yoshikawa
,
T.
, 1994, “
Mechanical Loading Thresholds for Lamellar and Woven Bone Formation
,”
J. Bone Miner. Res.
0884-0431,
9
(
1
), pp.
87
97
.
41.
Rubin
,
C. T.
, and
Lanyon
,
L. E.
, 1987, “
Kappa Delta Award Paper. Osteoregulatory Nature of Mechanical Stimuli: Function as a Determinant for Adaptive Remodeling in Bone
,”
J. Orthop. Res.
0736-0266,
5
(
2
), pp.
300
310
.
42.
Rubin
,
C. T.
,
Gross
,
T. S.
,
McLeod
,
K. J.
, and
Bain
,
S. D.
, 1995, “
Morphologic Stages in Lamellar Bone Formation Stimulated by a Potent Mechanical Stimulus
,”
J. Bone Miner. Res.
0884-0431,
10
(
3
), pp.
488
495
.
43.
Shimko
,
D. A.
,
White
,
K. K.
,
Nauman
,
E. A.
, and
Dee
,
K. C.
, 2003, “
A Device for Long Term, in Vitro Loading of Three-Dimensional Natural and Engineered Tissues
,”
Ann. Biomed. Eng.
0090-6964,
31
(
11
), pp.
1347
1356
.
44.
Brand
,
R. A.
,
Stanford
,
C. M.
, and
Nicolella
,
D. P.
, 2001, “
Primary Adult Human Bone Cells Do Not Respond to Tissue (Continuum) Level Strains
,”
J. Orthop. Sci.
0949-2658,
6
(
3
), pp.
295
301
.
45.
You
,
J.
,
Yellowley
,
C. E.
,
Donahue
,
H. J.
,
Zhang
,
Y.
,
Chen
,
Q.
, and
Jacobs
,
C. R.
, 2000, “
Substrate Deformation Levels Associated with Routine Physical Activity Are Less Stimulatory to Bone Cells Relative to Loading-Induced Oscillatory Fluid Flow
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
387
393
.
46.
Thomas
,
G. P.
, and
El Haj
,
A. J.
, 1996, “
Bone Marrow Stromal Cells Are Load Responsive in Vitro
,”
Calcif. Tissue Int.
0171-967X,
58
(
2
), pp.
101
108
.
47.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J.-C.
,
Brand
,
R. A.
, and
Claes
,
L.
, 2001, “
Cell Alignment Is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
0736-0266,
19
(
2
), pp.
286
293
.
48.
Kaspar
,
D.
,
Seidl
,
W.
,
Neidlinger-Wilke
,
C.
,
Ignatius
,
A.
, and
Claes
,
L.
, 2000, “
Dynamic Cell Stretching Increases Human Osteoblast Proliferation and Cicp Synthesis but Decreases Osteocalcin Synthesis and Alkaline Phosphatase Activity
,”
J. Biomech.
0021-9290,
33
(
1
), pp.
45
51
.
49.
Neidlinger-Wilke
,
C.
,
Wilke
,
H. J.
, and
Claes
,
L.
, 1994, “
Cyclic Stretching of Human Osteoblasts Affects, Proliferation and Metabolism: A New Experimental Method and Its Application
,”
J. Orthop. Res.
0736-0266,
12
(
1
), pp.
70
78
.
50.
Mullender
,
M.
,
El Haj
,
A. J.
,
Yang
,
Y.
,
Van Duin
,
M. A.
,
Burger
,
E. H.
, and
Klein-Nulend
,
J.
, 2004, “
Mechanotransduction of Bone Cells in Vitro: Mechanobiology of Bone Tissue
,”
Med. Biol. Eng. Comput.
0140-0118,
42
(
1
), pp.
14
21
.
51.
Boutahar
,
N.
,
Guignandon
,
A.
,
Vico
,
L.
, and
Lafage-Proust
,
M. H.
, 2004, “
Mechanical Strain on Osteoblasts Activates Autophosphorylation of Focal Adhesion Kinase and Proline-Rich Tyrosine Kinase 2 Tyrosine Sites Involved in Erk Activation
,”
J. Biol. Chem.
0021-9258,
279
(
29
), pp.
30588
30599
.
52.
Lamerigts
,
N. M.
,
Buma
,
P.
,
Huiskes
,
R.
,
Schreurs
,
W.
,
Gardeniers
,
J.
, and
Slooff
,
T. J.
, 2000, “
Incorporation of Morsellized Bone Graft under Controlled Loading Conditions. A New Animal Model in the Goat
,”
Biomaterials
0142-9612,
21
(
7
), pp.
741
747
.
53.
Nagatomi
,
J.
,
Arulanandam
,
B. P.
,
Metzger
,
D. W.
,
Meunier
,
A.
, and
Bizios
,
R.
, 2003, “
Cyclic Pressure Affects Osteoblast Functions Pertinent to Osteogenesis
,”
Ann. Biomed. Eng.
0090-6964,
31
(
8
), pp.
917
923
.
54.
Roelofsen
,
J.
,
Klein-Nulend
,
J.
, and
Burger
,
E. H.
, 1995, “
Mechanical Stimulation by Intermittent Hydrostatic Compression Promotes Bone-Specific Gene Expression in Vitro
,”
J. Biomech.
0021-9290,
28
(
12
), pp.
1493
1503
.
55.
Stanford
,
C. M.
,
Morcuende
,
J. A.
, and
Brand
,
R. A.
, 1995, “
Proliferative and Phenotypic Responses of Bone-Like Cells to Mechanical Deformation
,”
J. Orthop. Res.
0736-0266,
13
(
5
), pp.
664
670
.
56.
Claes
,
L. E.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Margevicius
,
K. J.
, and
Augat
,
P.
, 1998, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
(
Suppl
), pp.
S132
S147
.
57.
Jaecques
,
S. V.
,
Van Oosterwyck
,
H.
,
Muraru
,
L.
,
Van Cleynenbreugel
,
T.
,
De Smet
,
E.
,
Wevers
,
M.
,
Naert
,
I.
, and
Vander Sloten
,
J.
, 2004, “
Individualised, Micro Ct-Based Finite Element Modelling as a Tool for Biomechanical Analysis Related to Tissue Engineering of Bone
,”
Biomaterials
0142-9612,
25
(
9
), pp.
1683
1696
.
58.
Porter
,
B.
,
Zauel
,
R.
,
Stockman
,
H.
,
Guldberg
,
R.
, and
Fyhrie
,
D. P.
, 2005, “
3-D Computational Modeling of Media Flow through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
543
549
.
59.
Bancroft
,
G. N.
,
Sikavitsas
,
V. I.
, and
Mikos
,
A. G.
, 2003, “
Design of a Flow Perfusion Bioreactor System for Bone Tissue-Engineering Applications
,”
Tissue Eng.
1076-3279,
9
(
3
), pp.
549
554
.
60.
Ignatius
,
A.
,
Blessing
,
H.
,
Liedert
,
A.
,
Schmidt
,
C.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Friemert
,
B.
, and
Claes
,
L.
, 2005, “
Tissue Engineering of Bone: Effects of Mechanical Strain on Osteoblastic Cells in Type I Collagen Matrices
,”
Biomaterials
0142-9612,
26
(
3
), pp.
311
318
.
61.
Akhouayri
,
O.
,
Lafage-Proust
,
M. H.
,
Rattner
,
A.
,
Laroche
,
N.
,
Caillot-Augusseau
,
A.
,
Alexandre
,
C.
, and
Vico
,
L.
, 1999, “
Effects of Static or Dynamic Mechanical Stresses on Osteoblast Phenotype Expression in Three-Dimensional Contractile Collagen Gels
,”
J. Cell. Biochem.
0730-2312,
76
(
2
), pp.
217
230
.
62.
Tsukagoshi
,
T.
,
Satoh
,
K.
, and
Hosaka
,
Y.
, 1998, “
Cranioplasty with Neovascularized Autogenous Calvarial Bone
,”
Glass
0017-0984,
102
(
6
), pp.
2114
2118
.
63.
Pelissier
,
P.
,
Villars
,
F.
,
Mathoulin-Pelissier
,
S.
,
Bareille
,
R.
,
Lafage-Proust
,
M. H.
, and
Vilamitjana-Amedee
,
J.
, 2003, “
Influences of Vascularization and Osteogenic Cells on Heterotopic Bone Formation within a Madreporic Ceramic in Rats
,”
Glass
0017-0984,
111
(
6
), pp.
1932
1941
.
64.
Holt
,
G. E.
,
Halpern
,
J. L.
,
Dovan
,
T. T.
,
Hamming
,
D.
, and
Schwartz
,
H. S.
, 2005, “
Evolution of an in Vivo Bioreactor
,”
J. Orthop. Res.
0736-0266,
23
(
4
), pp.
916
923
.
65.
Jingushi
,
S.
,
Urabe
,
K.
,
Okazaki
,
K.
,
Hirata
,
G.
,
Sakai
,
A.
,
Ikenoue
,
T.
, and
Iwamoto
,
Y.
, 2002, “
Intramuscular Bone Induction by Human Recombinant Bone Morphogenetic Protein-2 with Beta-Tricalcium Phosphate as a Carrier: In Vivo Bone Banking for Muscle-Pedicle Autograft
,”
J. Orthop. Sci.
0949-2658,
7
(
4
), pp.
490
494
.
66.
Stevens
,
M. M.
,
Marini
,
R. P.
,
Schaefer
,
D.
,
Aronson
,
J.
,
Langer
,
R.
, and
Shastri
,
V. P.
, 2005, “
In Vivo Engineering of Organs: The Bone Bioreactor
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
(
32
), pp.
11450
11455
.
You do not currently have access to this content.