A model to predict the bone stiffness is presented in this paper. The objective is to obtain a description of bone stiffness of a representative elementary volume (REV) based on a small set of physical parameters. The main idea is to use measurable information related to the orientation and the density of a basic elementary submicrostructure (ESMS). This ESMS is the first arrangement of the basic components. A simple rule-of-mixtures approach is used to provide the elastic properties for the ESMS. The basic properties are dependent on the volume fraction of the mineralized phase. The orientation and the density of the ESMS is described by a tensor and a scalar, respectively. The model is used to obtain the elastic properties of both the cortical and trabecular bones. Data from femoral bone are used to verify this approach.

1.
Doblaré
,
M.
,
García
,
J. M.
, and
Gómez
,
M. J.
, 2004, “
Modelling Bone Tissue Fracture and Healing: A Review
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
13
–14, 1809–
1840
.
2.
Currey
,
J. D.
, 1969, “
The Relation Between the Stiffness and the Mineral Content of the Bone
,”
J. Biomech.
0021-9290,
3
, pp.
477
480
.
3.
Carter
,
D. R.
, and
Spengler
,
D. R.
, 1978, “
Mechanical Properties and Composition of Cortical Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
135
, pp.
192
217
.
4.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
, 1988, “
On the Dependence of the Elasticity and Strength of Cancelous Bone on Apparent Density
,”
J. Biomech.
0021-9290,
21
, pp.
155
168
.
5.
Crolet
,
J. M.
,
Aoubiza
,
B.
, and
Meunier
,
A.
, 1993, “
Compact Bone: Numerical Simulation of Mechanical Characteristics
,”
J. Biomech.
0021-9290,
26
, pp.
677
687
.
6.
Katz
,
J. L.
, and
Meunier
,
A.
, 1987, “
The Elastic Anisotropy of Bone
,”
J. Biomech.
0021-9290,
20
, pp.
1063
1070
.
7.
Hellmich
,
C.
, and
Ulm
,
F. J.
, 2002, “
Are Mineralized Tissues Open Crystals Foams Reinforced by Crosslinked Collagen? Some Energy Arguments
,”
J. Biomech.
0021-9290,
35
, pp.
1199
1212
.
8.
Wirtz
,
D. C.
,
Schiffers
,
N.
,
Pandorf
,
T.
,
Radermacher
,
K.
,
Weichert
,
D.
, and
Forst
,
R.
, 2000, “
Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur
,”
J. Biomech.
0021-9290,
33
, pp.
1325
1330
.
9.
Cowin
,
S. C.
, 1985, “
The Relation Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
0167-6636,
4
, pp.
137
147
.
10.
Cowin
,
S. C.
, 2004, “
Anisotropic Poroelasticity: Fabic Tensor Formulation
,”
Mech. Mater.
0167-6636,
36
, pp.
665
677
.
11.
Zysset
,
P. K.
, 2003, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
0021-9290,
36
, pp.
1469
1485
.
12.
Hernandez
,
C. J.
,
Beaupré
,
G. S.
,
Keller
,
T. S.
, and
Carter
,
D. R.
, 2001, “
The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus
,”
Bone (N.Y.)
8756-3282,
29
(
1
), pp.
74
78
.
13.
Weiner
,
S.
, and
Wagner
,
H. D.
, 1998, “
The Material Bone: Structure-Mechanical Function Relations
,
Annu. Rev. Mater. Sci.
0084-6600,
28
, pp.
271
298
.
14.
Gilmore
,
R. S.
, and
Katz
,
J. L.
, 1982, “
Elastic Properties of Apatites
,”
J. Mater. Sci.
0022-2461,
17
, pp.
1131
1141
.
15.
Pidaparti
,
R. M. V.
,
Chandran
,
A.
,
Takano
,
Y.
, and
Turner
,
C. H.
, 1996, “
Bone Mineral Lies Mainly Outside Collagen Fibrils: Predictions of a Composite Model for Osteonal Bone
,”
J. Biomech.
0021-9290,
29
(
7
), pp.
909
916
.
16.
Katz
,
J. L.
, 1981, “
Composite Material Models for Cortical Bone
,”
Mechnical Propertis of Bones
,
S. C.
Cowin
, ed.,
ASME
, New York, pp.
171
184
.
17.
Gupta
,
H. S.
,
Schratter
,
S.
,
Tesch
,
W.
,
Roschger
,
P.
,
Berzlanovich
,
A.
,
Schoeberl
,
T.
,
Klaushofer
,
K.
, and
Fratzl
,
P.
, 2005, “
Two Different Correlations Between Nanoindentation Modulus and Mineral Content in the Bone-Cartilage Interface
,”
J. Struct. Biol.
1047-8477,
149
, pp.
138
148
.
18.
Tsai
,
S. W.
, and
Hahn
,
H. T.
, 1980,
Introduction to Composite Materials
,
Technomic
, Lancaster.
19.
Sevostianov
,
I.
, and
Kachanov
,
M.
, 2000, “
Impact of the Porous Microstructure on the Overall Elastic Properties of the Osteonal Cortical Bone
,”
J. Biomech.
0021-9290,
33
, pp.
881
888
.
20.
Voigt
,
W.
, 1928,
Lehrbuch der Kristallphysik
,
Teubner
, Leipzig.
21.
Lotz
,
J. C.
,
Gerhart
,
T. N.
, and
Hayes
,
C. W.
, 1991, “
Mechanical Properties of Metaphysical Bone in the Proximal Femur
,”
J. Biomech.
0021-9290,
24
(
5
), pp.
317
329
.
22.
Currey
,
J. D.
, 1988, “
The Effect of Porosity and Mineral Content on the Young’s Modulus of Elastic Compact Bone
,”
J. Biomech.
0021-9290,
21
, pp.
131
139
.
23.
Keller
,
T. S.
, 1994, “
Predicting the Compressive Mechanical Behaviour of Bone
,”
J. Biomech.
0021-9290,
27
, pp.
1159
1168
.
24.
Dvorak
,
G. J.
, and
Srinivas
,
M. V.
, 1999, “
New Estimates of Overall Properties of Heterogeneous Solids
,”
J. Mech. Phys. Solids
0022-5096,
47
(
4
), pp.
899
920
.
25.
Shaffler
,
M. B.
, and
Burr
,
D. D.
, 1988, “
Stiffness of Compact Bone: Effects of the Porosity and Density
,”
J. Biomech.
0021-9290,
21
, pp.
13
16
.
26.
Odgaard
,
A.
, 1997, “
Three-Dimensional Methods for Quantification of Canbcelous Bone Architecture
,”
Bone (N.Y.)
8756-3282,
20
(
4
), pp.
315
328
.
You do not currently have access to this content.