Atherosclerosis localizes at a bend and∕or bifurcation of an artery, and low density lipoproteins (LDL) accumulate in the intima. Hemodynamic factors are known to affect this localization and LDL accumulation, but the details of the process remain unknown. It is thought that the LDL concentration will be affected by the filtration flow, and that the velocity of this flow will be affected by deformation of the arterial wall. Thus, a coupled model of a blood flow and a deformable arterial wall with filtration flow would be invaluable for simulation of the flow field and concentration field in sequence. However, this type of highly coupled interaction analysis has not yet been attempted. Therefore, we performed a coupled analysis of an artery with multiple bends in sequence. First, based on the theory of porous media, we modeled a deformable arterial wall using a porohyperelastic model (PHEM) that was able to express both the filtration flow and the viscoelastic behavior of the living tissue, and simulated a blood flow field in the arterial lumen, a filtration flow field and a displacement field in the arterial wall using a fluid-structure interaction (FSI) program code by the finite element method (FEM). Next, based on the obtained results, we further simulated LDL transport using a mass transfer analysis code by the FEM. We analyzed the PHEM in comparison with a rigid model. For the blood flow, stagnation was observed downward of the bends. The direction of the filtration flow was only from the lumen to the wall for the rigid model, while filtration flows from both the wall to the lumen and the lumen to the wall were observed for the PHEM. The LDL concentration was high at the lumen∕wall interface for both the PHEM and rigid model, and reached its maximum value at the stagnation area. For the PHEM, the maximum LDL concentration in the wall in the radial direction was observed at the position of 3% wall thickness from the lumen∕wall interface, while for the rigid model, it was observed just at the lumen∕wall interface. In addition, the peak LDL accumulation area of the PHEM moved about according to the pulsatile flow. These results demonstrate that the blood flow, arterial wall deformation, and filtration flow all affect the LDL concentration, and that LDL accumulation is due to stagnation and the presence of filtration flow. Thus, FSI analysis is indispensable.

1.
Caro
,
C. G.
,
Fitz-Gerald
,
J. M.
, and
Schroter
,
R. C.
, 1971, “
Atheroma and Arterial Wall Shear Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis
,”
Proc. R. Soc. London, Ser. B
0962-8452,
177
, pp.
109
159
.
2.
Hoff
,
H. F.
,
Heideman
,
C. L.
,
Jackson
,
R. L.
,
Bayardo
,
R. J.
,
Kim
,
H. S.
, and
Gotto
,
A. M.
Jr.
, 1975, “
Localization Patterns of Plasma Apolipoproteins in Human Atherosclerotic Lesions
,”
Circ. Res.
0009-7330,
37
, pp.
72
79
.
3.
Nerem
,
R. M.
, 1992, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
274
282
.
4.
Nerem
,
R. M.
, 1993, “
Hemodynamic and the Vascular Endothelium
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
510
514
.
5.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
155
196
.
6.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
975
987
.
7.
Yamaguchi
,
T.
,
Yamamoto
,
Y.
, and
Liu
,
H.
, 2000, “
Computational Mechanical Model Studies on the Spontaneous Emergent Morphogenesis of the Cultured Endothelial Cells
,”
J. Biomech.
0021-9290,
33
, pp.
115
126
.
8.
Oshima
,
M.
,
Torii
,
R.
,
Kobayashi
,
T.
,
Taniguchi
,
N.
, and
Takagi
,
K.
, 2001, “
Finite Element Simulation of Blood Flow in the Cerebral Artery
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
661
671
.
9.
Perktold
,
K.
,
Hofer
,
M.
,
Rappitsch
,
G.
,
Loew
,
M.
,
Kuban
,
B. D.
, and
Friedman
,
M. H.
, 1998, “
Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch
,”
J. Biomech.
0021-9290,
31
, pp.
217
228
.
10.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
, pp.
845
856
.
11.
Downing
,
J. M.
, and
Ku
,
D. N.
, 1997, “
Effects of Frictional Losses and Pulsatile Flow on the Collapse of Stenotic Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
317
324
.
12.
Bathe
,
M.
, and
Kamm
,
R. D.
, 1999, “
A Fluid-Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
361
369
.
13.
Tang
,
D.
,
Yang
,
C.
, and
Ku
,
D. N.
, 1999, “
A 3-D Thin-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Symmetric and Asymmetric Stenoses
,”
Comput. Struct.
0045-7949,
72
, pp.
357
377
.
14.
Tang
,
D.
,
Yang
,
C.
,
Huang
,
Y.
, and
David
,
N. Ku.
, 1999, “
Wall Stress and Strain Analysis Using a Three Dimensional Thick-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Stenoses
,”
Comput. Struct.
0045-7949,
72
, pp.
341
356
.
15.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2001, “
Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid-Wall Interactions
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
548
557
.
16.
Simon
,
B. R.
, 1992, “
Multiphase Poroelastic Finite Element Models for Soft Tissue Structure
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
191
218
.
17.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
, and
Baldwin
,
A. L.
, 1993, “
Finite Element Models for Arterial Wall Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
489
496
.
18.
Wada
,
S.
, and
Karino
,
T.
, 2002, “
Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery With a Multiple Bend
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
778
791
.
19.
Wada
,
S.
,
Koujiya
,
M.
, and
Karino
,
T.
, 2002, “
Theoretical Study of the Effect of Local Flow Disturbances on the Concentration of Low-Density Lipoproteins at the Luminal Surface of End-to-End Anastomosed Vessels
,”
Med. Biol. Eng. Comput.
0140-0118,
40
, pp.
576
587
.
20.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Computational Analysis of Coupled Blood-Wall Arterial LDL Transport
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
1
8
.
21.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Coupled Computational Analysis of Arterial LDL Transport-Effects of Hypertension
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
, pp.
233
241
.
22.
Stangeby
,
D. K.
, 2000, “
Computational Analysis of Arterial Mass Transport: Fluid and Wall-Side Effects
,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.
23.
Rappitsch
,
G.
,
Perktold
,
K.
, and
Pernkopf
,
E.
, 1997, “
Numerical Modeling of Shear-Dependent Mass Transfer in Large Arteries
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
847
857
.
24.
Karner
,
G.
, and
Perktold
,
K.
, 1999, “
Numerical Modeling of Mass Transport in the Arterial Wall
,” in
Proceedings of the 1999 Bioengineering Conference
,
V. K.
Goel
et al.
, eds., BED 42,
ASME
,
New York
, pp.
739
740
.
25.
Karner
,
G.
, and
Perktold
,
K.
, 2000, “
Effect of Endothelial Injury and Increased Blood Pressure on Albumin Accumulation in the Arterial Wall: A Numerical Study
,”
J. Biomech.
0021-9290,
33
, pp.
709
715
.
26.
Kolandavel
,
M. K.
,
Fruend
,
E. T.
,
Pedersen
,
E. M.
,
Ringgaard
,
S.
, and
Walker
,
P. G.
, 2004, “
A CFD Study of the Luminal Surface Concentration of Low Density Lipoprotein in Coronary Arteries: The Effect of Wall Motion
,” WCCM VI in conjunction with AAPCOM’04, Beijing China, September, pp.
5
10
.
27.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
, 2004, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
0021-9290,
37
, pp.
1767
1775
.
28.
Prosi
,
M.
,
Zunino
,
P.
,
Perktold
,
K.
, and
Quarteroni
,
A.
, 2005, “
Mathematical and Numerical Models for Transfer of Low-Density Lipoproteins Through the Arterial Wall: A New Methodology for the Model Set Up With Applications to the Study of Disturbed Lumenal Flow
,”
J. Biomech.
0021-9290,
38
, pp.
903
917
.
29.
Shibeshi
,
S. S.
,
Everett
,
J.
,
Venable
,
D. D.
, and
Collins
,
W. E.
, 2005, “
Simulated Blood Transport of Low Density Lipoproteins in a Three-Dimensional and Permeable T-Junction
,”
ASAIO J.
1058-2916,
51
, pp.
269
274
.
30.
Kaazempur-Mofrad
,
M. R.
, and
Ethier
,
C. R.
, 2001, “
Mass Transport in an Anatomically Realistic Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
121
127
.
31.
Kaazempur-Mofrad
,
M. R.
,
Wada
,
S.
,
Myers
,
J. G.
, and
Ethier
,
C. R.
, 2005, “
Blood Flow and Mass Transfer in Arteries With Axisymmetric and Asymmetric Stenoses
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4510
4517
.
32.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixture
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
33.
Spilker
,
R. L.
, and
Suh
,
J.-K.
, 1990, “
Formation and Evaluation of a Finite Element Model of Soft Hydrated Tissue
,”
Comput. Struct.
0045-7949,
35
, pp.
425
439
.
34.
Boer
,
R. de(Reint)
, 2000,
Theory of Porous Media: Highlights in Historical Development and Current State
,
Springer-Verlag
,
Berlin
.
35.
Zhang
,
Q.
, and
Hisada
,
T.
, 2001, “
Analysis of Fluid-Structure Interaction Problems With Structural Buckling and Large Domain Changes by ALE Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6341
6357
.
36.
Levenston
,
M. E.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1998, “
Variational Derived 3-Field Finite Element Formulations for Quasistatic Poroelastic Analysis of Hydrated Biological Tissues
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
156
, pp.
231
246
.
37.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective in Tissues Ultrafiltration
,”
J. Biomech.
0021-9290,
23
, pp.
1145
1156
.
38.
Tezduyar
,
T. E.
, 1991, “
Stabilized Finite Element Formulation for Incompressible Flow Computations
,”
Adv. Appl. Mech.
0065-2156,
28
, pp.
1
44
.
39.
Wada
,
S.
, and
Karino
,
T.
, 1999, “
Theoretical Study on Flow-Dependent Concentration Polarization of Low Density Lipoprotein at the Luminal Surface of a Straight Artery
,”
Biorheology
0006-355X,
36
, pp.
207
223
.
40.
Morris
,
E. D.
,
Saidel
,
G. M.
, and
Chisolm
, III
G. M.
, 1991, “
Optimal Design of Experiments to Estimate LDL Transport Parameters in Arterial Wall
,”
Am. J. Phys.
0002-9505,
261
, pp.
H929
H949
.
41.
Washio
,
T.
,
Hisada
,
T.
,
Watanabe
,
H.
, and
Tezduyar
,
T. E.
, 2005, “
A Robust Preconditioner for Fluid-Structure Interaction Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
4027
4047
.
42.
Nichols
,
W. W.
, and
O’Rourke
,
M. F.
, 1990,
McDonald’s Blood Flow in Arteries
,
3rd ed.
,
Lea & Febiger
,
Philadelphia
, Chap. 4.
43.
Berne
,
R. M.
, and
Levy
,
M. N.
, 2001,
Cardiovascular Physiology
,
8th ed.
,
Mosby
,
St. Louis
, Chap. 9.
44.
Lee
,
K.
,
Saidel
,
G. M.
, and
Penn
,
M. S.
, 2005, “
Macromolecular Transport in the Arterial Wall: Alternative Models for Estimating Barriers
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1491
1503
.
You do not currently have access to this content.