The variations in mechanical properties of cells obtained from experimental and theoretical studies can be overcome only through the development of a sound mathematical framework correlating the derived mechanical property with the cellular structure. Such a formulation accounting for the inhomogeneity of the cytoplasm due to stress fibers and actin cortex is developed in this work. The proposed model is developed using the Mori-Tanaka method of homogenization by treating the cell as a fiber-reinforced composite medium satisfying the continuum hypothesis. The validation of the constitutive model using finite element analysis on atomic force microscopy (AFM) and magnetic twisting cytometry (MTC) has been carried out and is found to yield good correlation with reported experimental results. It is observed from the study that as the volume fraction of the stress fiber increases, the stiffness of the cell increases and it alters the force displacement behavior for the AFM and MTC experiments. Through this model, we have also been able to find the stress fiber as a likely cause of the differences in the derived mechanical property from the AFM and MTC experiments. The correlation of the mechanical behavior of the cell with the cell composition, as obtained through this study, is an important observation in cell mechanics.

1.
Hu
,
S.
,
Eberhard
,
L.
,
Chen
,
J.
, and
Love
,
J. C.
, 2004, “
Mechanical Anisotropy of Adherent Cells Probed by a Three-Dimensional Magnetic Twisting Device
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
287
, pp.
C1184
C1191
.
2.
Na
,
S.
,
Sun
,
Z.
,
Meininger
,
G. A.
, and
Humphrey
,
J. D.
, 2004, “
On Atomic Force Microscopy and the Constitutive Behavior of Cells
,”
Biomech. Model Mechanobiol.
,
3
, pp.
75
84
.
3.
Karcher
,
H.
,
Lammerding
,
J.
,
Huang
,
H.
,
Lee
,
R. T.
,
Kamm
,
R. D.
, and
Kaazempur-Mofrad
,
M. R.
, 2003, “
A Three-Dimensional Viscoelastic Model for Cell Deformation With Experimental Verification
,”
Biophys. J.
0006-3495,
85
(
5
), pp.
3336
3349
.
4.
Ohayon
,
J.
, and
Tracqui
,
P.
, 2005, “
Computation of Adherent Cell Elasticity for Critical Cell-Bead Geometry in Magnetic Twisting Experiments
,”
Ann. Biomed. Eng.
0090-6964,
33
(
2
), pp.
131
141
.
5.
Costa
,
K. D.
,
Sim
,
A. J.
, and
Yin
,
F. C.-P.
, 2006, “
Non-Hertzian Approach to Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
176
184
.
6.
Rotsch
,
C.
, and
Radmacher
,
M.
, 2000, “
Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study
,”
Biophys. J.
0006-3495,
78
(
1
), pp.
520
535
.
7.
Humphrey
,
J. D.
, 2002, “
On Mechanical Modeling of Dynamic Changes in Structure and Properties in Adherent Cells
,”
Math. Mech. Solids
1081-2865,
7
, pp.
521
539
.
8.
Wu
,
H. W.
,
Kuhn
,
T.
, and
Moy
,
V. T.
, 1998, “
Mechanical Properties of L929 Cells Measured by Atomic Force Microscopy: Effects of Anticytoskeletal Drugs and Membrane Crosslinking
,”
Scanning
0161-0457,
20
(
5
), pp.
389
397
.
9.
Lekka
,
M.
,
Laidler
,
P.
,
Gil
,
D.
,
Lekki
,
J.
,
Stachura
,
Z.
, and
Hrynkiewicz
,
A. Z.
, 1999, “
Elasticity of Normal and Cancerous Human Bladder Cells Studied by Scanning Force Microscopy
,”
Eur. Biophys. J.
0175-7571,
28
(
4
), pp.
312
316
.
10.
Rao
,
K. M.
, and
Cohen
,
H. J.
, 1991, “
Actin Cytoskeletal Network in Aging and Cancer
,”
Mutat Res.
0027-5107,
256
(
2–6
), pp.
139
148
.
11.
Boal
,
D.
, 2002,
Mechanics of the Cell
,
Cambridge University Press
, Cambridge.
12.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
, 2002,
Molecular Biology of the Cell
,
Garland, New York.
13.
Mathur
,
A. B.
,
Truskey
,
G. A.
, and
Reichert
,
W. M.
, 2000, “
Atomic Force and Total Internal Reflection Fluorescence Microscopy for the Study of Force Transmission in Endothelial Cells
,”
Biophys. J.
0006-3495,
78
(
4
), pp.
1725
1735
.
14.
Ogden
,
R. W.
, 1984,
Nonlinear Elastic Deformations
,
Dover
, New York.
15.
Heidemann
,
S. R.
, and
Wirtz
,
D.
, 2004, “
Towards a Regional Approach to Cell Mechanics
,”
Trends Cell Biol.
0962-8924,
14
(
4
), pp.
160
166
.
16.
Feneberg
,
W.
,
Aepfelbacher
,
M.
, and
Sackmann
,
E.
, 2004, “
Microviscoelasticity of the Apical Cell Surface of Human Umbilical Vein Endothelial Cells (HUVEC) Within Confluent Monolayers
,”
Biophys. J.
0006-3495,
87
, pp.
1338
1350
.
17.
Nasser
,
S. N.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier Science
, Amsterdam.
18.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
(
1226
), pp.
376
396
.
19.
MacKintosh
,
F. C.
,
Kas
,
J.
, and
Janmey
,
P. A.
, 1995, “
Elasticity of Semiflexible Biopolymer Networks
,”
Phys. Rev. Lett.
0031-9007,
75
(
24
), pp.
4425
4428
.
20.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
, 2006, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
0021-9290,
39
(
14
), pp.
2603
2610
.
21.
Wang
,
Y. M.
, and
Weng
,
G. J.
, 1992, “
The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
510
518
.
22.
McGarry
,
J. G.
, and
Prendergast
,
P. J.
, 2004, “
A Three-Dimensional Finite Element Model of an Adherent Eukaryotic Cell
,”
Eur. Cells Mater
1473-2262,
16
(
7
), pp.
27
33
.
23.
Costa
,
K. D.
, and
Yin
,
F. C.-P.
, 1999, “
Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
462
471
.
24.
Reddy
,
J. N.
, 2006,
An Introduction to the Finite Element Method
, 3rd ed.,
McGraw-Hill
, New York.
25.
Reddy
,
J. N.
, 2004,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
, Oxford.
26.
Hibbit
,
K.
, and Sorensen Inc, HKS, 2002, “
ABAQUS Standard, Version 6.3-2
,” HKS, Providence, R.I.
27.
Mijailovich
,
S. M.
,
Kojic
,
M.
,
Zivkovic
,
M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
, 2002, “
A Finite Element Model of Cell Deformation During Magnetic Bead Twisting
,”
J. Appl. Physiol.
8750-7587,
93
, pp.
1429
1436
.
28.
Ohayon
,
J.
,
Tracqui
,
P.
,
Fodil
,
R.
,
Fereol
,
S.
,
Laurent
,
V. M.
,
Planus
,
E.
, and
Isabey
,
D.
, 2004, “
Analysis of Nonlinear Responses of Adherent Epithelial Cells Probed by Magnetic Bead Twisting: A Finite Element Model Based on a Homogenization Approach
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
685
698
.
29.
Ingber
,
D. E.
,
Heidemann
,
S. R.
,
Lamoureux
,
P.
, and
Buxbaum
,
R. E.
, 2000, “
Opposing Views on Tensegrity as a Structural Framework for Understanding Cell Mechanics
,”
J. Appl. Physiol.
8750-7587,
89
, pp.
1663
1678
.
This content is only available via PDF.
You do not currently have access to this content.