Background: The use of artificial bone analogs in biomechanical testing of orthopaedic fracture fixation devices has increased, particularly due to the recent development of commercially available femurs such as the third generation composite femur that closely reproduce the bulk mechanical behavior of human cadaveric and∕or fresh whole bone. The purpose of this investigation was to measure bone screw pullout forces in composite femurs and determine whether results are comparable to cadaver data from previous literature. Method of Approach: The pullout strengths of 3.5 and 4.5mm standard bicortical screws inserted into synthetic third generation composite femurs were measured and compared to existing adult human cadaveric and animal data from the literature. Results: For 3.5mm screws, the measured extraction shear stress in synthetic femurs (23.70-33.99MPa) was in the range of adult human femurs and tibias (24.4-38.8MPa). For 4.5mm screws, the measured values in synthetic femurs (26.04-34.76MPa) were also similar to adult human specimens (15.9-38.9MPa). Synthetic femur results for extraction stress showed no statistically significant site-to-site effect for 3.5 and 4.5mm screws, with one exception. Overall, the 4.5mm screws showed statistically higher stress required for extraction than 3.5mm screws. Conclusions: The third generation composite femurs provide a satisfactory biomechanical analog to human long-bones at the screw-bone interface. However, it is not known whether these femurs perform similarly to human bone during physiological screw “toggling.”

1.
Tencer
,
A. F.
, and
Johnson
,
K. D.
, 1994, “
Lower Extremity Fixation
” in
Biomechanics in Orthopedic Trauma
,
J. B. Lippincott Company
,
Philadelphia
, pp.
249
274
.
2.
Ogden
,
W. S.
, and
Rendall
,
J.
, 1978, “
Fractures Beneath Hip Prostheses: A Special Indication for Parham Bands and Plating
,”
Orthop. Trans.
,
2
, p.
70
.
3.
Althausen
,
P. L.
,
Lee
,
M. A.
,
Finkemeier
,
C. G.
,
Meehan
,
J. P.
, and
Rodrigo
,
J. J.
, 2003, “
Operative Stabilization of Supracondylar Femur Fractures Above Total Knee Arthroplasty: A Comparison of Four Treatment Methods
,”
J. Arthroplasty
0883-5403,
18
, pp.
834
839
.
4.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
, 2000, “
Fixation of Periprosthetic Femoral Shaft Fractures Occurring at the Tip of the Stem: A Biomechanical Study of 5 Techniques
,”
J. Arthroplasty
0883-5403,
15
(
4
), pp.
523
528
.
5.
Emerson
,
R. H.
, Jr.
,
Malinin
,
T. I.
,
Cuellar
,
A. D.
,
Head
,
W. C.
, and
Peters
,
P. C.
, 1992, “
Cortical Strut Allografts in the Reconstruction of the Femur in Revision Total Hip Arthroplasty. A Basic Science and Clinical Study
,”
Clin. Orthop. Relat. Res.
0009-921X,
285
, pp.
35
44
.
6.
Fulkerson
,
E.
,
Egol
,
K.
,
Preston
,
C.
,
Iesaka
,
K.
,
Kummer
,
F.
, and
Koval
,
K.
, 2004, “
Fixation of Periprothetic Femoral Shaft Fractures: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates (Ogden Construct)
,”
Proceedings of the Orthopaedic Trauma Association 20th Annual Meeting
,
Florida
.
7.
Kelley
,
S. S.
, 1994, “
Periprosthetic Femoral Fractures
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
2
, pp.
164
172
.
8.
Alho
,
A.
, 1997, “
Concurrent Ipsilateral Fractures of the Hip and Shaft of the Femur: A Systematic Review of 722 Cases
,”
Ann. Chir. Gynaecol.
0355-9521,
86
(
4
), pp.
326
336
.
9.
Rockwood and Green’s Fractures in Adults
,
5th ed.
, 2001,
R. W.
Bucholz
J. D.
Heckman
, eds.,
Lippincott, Williams, and Wilkins
,
Philadelphia, PA
.
10.
Fulkerson
,
E.
,
Koval
,
K.
,
Preston
,
C. F.
,
Iesaka
,
K.
,
Kummer
,
F. J.
, and
Egol
,
K. A.
, 2006, “
Fixation of Periprosthetic Femoral Shaft Fractures Associated With Cemented Femoral Stems: A Biomechanical Comparison of Locked Plating and Conventional Cable Plates
,”
J. Orthop. Trauma
0890-5339,
20
(
2
), pp.
89
93
.
11.
Law
,
M.
,
Tencer
,
A. F.
, and
Anderson
,
P. A.
, 1993, “
Caudo-Cephalad Loading of Pedicle Screws: Mechanisms of Loosening and Methods of Augmentation
,”
Spine
0362-2436,
18
, pp.
2438
2443
.
12.
Merk
,
B. R.
,
Stern
,
S. H.
,
Cordes
,
S.
, and
Lautenschlager
,
E. P.
, 2001, “
A Fatigue Life Analysis of Small Fragment Screws
,”
J. Orthop. Trauma
0890-5339,
15
(
7
), pp.
494
499
.
13.
Ansell
,
R.
, and
Scales
,
J.
, 1968, “
A Study of Some Factors Which Affect the Strength of Screws and Their Insertion and Holding Power in Bone
,”
J. Biomech.
0021-9290,
1
(
4
), pp.
279
302
.
14.
Cheal
,
E. J.
,
Spector
,
M.
, and
Hayes
,
W. C.
, 1992, “
Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
10
, pp.
405
422
.
15.
Cusick
,
R. P.
,
Lucas
,
G. L.
,
McQueen
,
D. A.
, and
Graber
,
C. D.
, 2000, “
Construct Stiffness of Different Fixation Methods for Supracondylar Femoral Fractures Above Total Knee Prostheses
,”
Am. J. Orthop.
0065-9002,
29
(
9
), pp.
695
699
.
16.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
(
2
), pp.
93
108
.
17.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
, pp.
773
781
.
18.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2003, “
Structural Properties of an Improved Redesign of Composite Replicate Femurs and Tibias
,”
Proceedings of the 49th Annual Meeting of the Orthopaedic Research Society
,
New Orleans
.
19.
Peindl
,
R. D.
,
Zura
,
R. D.
,
Vincent
,
A.
,
Coley
,
E. R.
,
Bosse
,
M. J.
, and
Sims
,
S. H.
, 2004, “
Unstable Proximal Extraarticular Tibia Fractures: A Biomechanical Evaluation of Four Methods of Fixation
,”
J. Orthop. Trauma
0890-5339,
18
(
8
), pp.
540
545
.
20.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, “
The Biomechanics of Periprosthetic Mid-Shaft Femoral Fractures following THA: A Comparison of Locked Plates, Non-Locked Plates, and Allograft Struts
,” unpublished.
21.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
22.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
0021-9290,
33
(
3
), pp.
279
288
.
23.
Papini
,
M.
,
Zdero
,
R.
,
Zalzal
,
P.
, and
Schemitsch
,
E. H.
, 2007, “
The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs
,”
J. Biomech. Eng.
0148-0731, in press.
24.
Yerby
,
S.
,
Scott
,
C.
,
Evans
,
N. J.
,
Messing
,
K. L.
, and
Carter
,
D. R.
, 2001, “
Effect of Cutting Flute Design on Cortical Bone Screw Insertion Torque and Pullout Strength
,”
J. Orthop. Trauma
0890-5339,
15
(
3
), pp.
216
221
.
25.
Stromsoe
,
K.
,
Kok
,
W. L.
,
Hoiseth
,
A.
, and
Alho
,
A.
, 1993, “
Holding Power of the 4.5mm AO∕ASIF Cortex Screw in Cortical Bone in Relation to Bone Mineral
,”
Injury
0020-1383,
24
(
10
), pp.
656
659
.
26.
Schatzker
,
J.
,
Sanderson
,
R.
, and
Murnaghan
,
J. P.
, 1975, “
The Holding Power of Orthopedic Screws In Vivo
,”
Clin. Orthop. Relat. Res.
0009-921X,
108
, pp.
115
126
.
27.
Lawson
,
K. J.
, and
Brems
,
J.
, 2001, “
Effect of Insertion Torque on Bone Screw Pullout Strength
,”
Orthopedics
0147-7447,
24
(
5
), pp.
451
454
.
28.
Bolliger Neto
,
R.
,
Alvarenga Rossi
,
J. D. M. B.
, and
Leivas
,
T. P.
, 1999, “
Experimental Determination of Bone Cortex Holding Power of Orthopedic Screw
,”
Rev. Hosp. Clin. Fac. Med. Sao Paulo
0041-8781,
54
(
6
), pp.
181
186
.
29.
Lyon
,
W. F.
,
Cochran
,
J. R.
, and
Smith
,
L.
, 1941, “
Actual Holding Power of Various Screws in Bone
,”
Ann. Surg.
0003-4932,
114
, pp.
376
384
.
30.
Trader
,
J. E.
,
Johnson
,
R. P.
, and
Kalbfleisch
,
J. H.
, 1979, “
Bone Mineral Content, Surface Hardness, and Mechanical Fixation in the Human Radius
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
61-A
, pp.
1217
1220
.
31.
Schatzker
,
J.
,
Sanderson
,
R.
, and
Murnaghan
,
J. P.
, 1975, “
The Holding Power of Orthopedic Screws In Vivo
,”
Clin. Orthop. Relat. Res.
0009-921X,
108
, pp.
115
126
.
32.
Koranyi
,
E.
,
Bowman
,
C. E.
,
Knecht
,
C. D.
, and
Janssen
,
M.
, 1970, “
The Holding Power of Orthopedic Screws in Bone
,”
Clin. Orthop. Relat. Res.
0009-921X,
72
, pp.
283
286
.
33.
Vangsness
,
C. T.
, Jr
,
Carter
,
D. R.
, and
Frankel
,
V. H.
, 1981, “
In Vitro Evaluation of the Loosening Characteristics of Self-tapped and Non-self-tapped Cortical Bone Screws
,”
Clin. Orthop. Relat. Res.
0009-921X,
157
, pp.
279
286
.
34.
Leggon
,
R.
,
Lindsey
,
R. W.
,
Doherty
,
B. J.
,
Alexander
,
J.
, and
Noble
,
P.
, 1993, “
The Holding Strength of Cannulated Screws Compared With Solid Core Screws in Cortical and Cancellous Bone
,”
J. Orthop. Trauma
0890-5339,
7
(
5
), pp.
450
457
.
35.
Flahiff
,
C. M.
,
Gober
,
G. A.
, and
Nicholas
,
R. W.
, 1995, “
Pullout Strength of Fixation Screws from Polymethylmethacrylate Bone Cement
,”
Biomaterials
0142-9612,
6
(
7
), pp.
533
536
.
36.
Chapman
,
J. R.
,
Harrington
,
R. M.
,
Lee
,
K. M.
,
Anderson
,
P. A.
,
Tencer
,
A. F.
, and
Kowalski
,
D.
, 1996, “
Factors Affecting the Pullout Strength of Cancellous Bone Screws
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
391
398
.
37.
Baumgart
,
F. W.
,
Cordey
,
J.
,
Morikawa
,
K.
,
Perren
,
S. M.
,
Rahn
,
B. A.
,
Schavan
,
R.
, and
Snyder
,
S.
, 1993, “
AO∕ASIF Self Tapping Screws (STS)
,”
Injury Sup.
,
1
, pp.
S1
-
S17
.
38.
Linke
,
B.
,
Butscher
,
A.
,
Schneider
,
R.
,
Wahl
,
D.
, and
Gasser
,
B.
, 2003, “
Holding Strength of Conventional and Locking Head Screws
,”
Folia Traumatologica Lovaniensia
, pp.
68
79
.
You do not currently have access to this content.