Abstract

Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasi-static (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (110s) fluid flows and slow (50400s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease.

1.
Fatemi
,
M.
,
Wold
,
L.
,
Alizad
,
A.
, and
Greenleaf
,
J.
, 2002, “
Vibro-Acoustic Tissue Mammography
,”
IEEE Trans. Med. Imaging
0278-0062,
21
, pp.
1
8
.
2.
Sharma
,
A.
,
Soo
,
M.
,
Trahey
,
G.
, and
Nightingale
,
K.
, 2004, “
Acoustic Radiation Force Impulse Imaging of in vivo Breast Masses
,” in
Proc. IEEE Ultrason. Symp.
, Vol.
1
, pp.
728
731
.
3.
Sinkus
,
R.
,
Tanter
,
M.
,
Xydeas
,
T.
,
Catheline
,
S.
,
Bercoff
,
J.
, and
Fink
,
M.
, 2005, “
Viscoelastic Shear Properties of in vivo Breast Lesions Measured by MR Elastography
,”
Magn. Reson. Imaging
0730-725X,
23
, pp.
159
165
.
4.
Krouskop
,
T.
,
Wheeler
,
T.
,
Kallel
,
F.
,
Garra
,
B.
, and
Hall
,
T.
, 1998, “
Elastic Moduli of Breast and Prostate Tissues Under Compression
,”
Ultrason. Imaging
0161-7346,
20
, pp.
260
274
.
5.
Elenbaas
,
B.
, and
Weinberg
,
R.
, 2001, “
Heterotypic Signaling Between Epithelial Tumor Cells and Fibroblasts in Carcinoma Formation
,”
Exp. Cell Res.
0014-4827,
264
, pp.
169
184
.
6.
Insana
,
M.
,
Pellot-Barakat
,
C.
,
Sridhar
,
M.
, and
Lindfors
,
K.
, 2004, “
Viscoelastic Imaging of Breast Tumor Microenvironment With Ultrasound
,”
J. Mammary Gland Biol. Neoplasia
,
9
, pp.
393
404
.
7.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D.
, 2003, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
347
354
.
8.
Zoumi
,
A.
,
Lu
,
X.
,
Kassab
,
G.
, and
Tromberg
,
B.
, 2004, “
Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy
,”
Biophys. J.
0006-3495,
87
, pp.
2778
2786
.
9.
Ganten
,
M.
,
Boese
,
J.
,
Leitermann
,
D.
, and
Semmler
,
W.
, 2005, “
Quantification of Aortic Elasticity: Development and Experimental Validation of a Method Using Computed Tomography
,”
Eur. Radiol.
0938-7994,
15
, pp.
2506
2512
.
10.
Zhang
,
X.
,
Kinnick
,
R.
,
Fatemi
,
M.
, and
Greenleaf
,
J.
, 2005, “
Noninvasive Method for Estimating a Complex Elastic Modulus of Arterial Vessels
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
52
, pp.
642
652
.
11.
Zlatanova
,
J.
, and
Leuba
,
S.
, 2002, “
Stretching and Imaging Single DNA Molecules and Chromatin
,”
J. Muscle Res. Cell Motil.
0142-4319,
23
, pp.
377
395
.
12.
Ko
,
H.
,
Tan
,
W.
,
Stack
,
R.
, and
Boppart
,
S.
, 2006, “
Optical Coherence Elastography of Engineered and Developing Tissue
,”
Tissue Eng.
1076-3279,
12
, pp.
63
73
.
13.
Ingber
,
D.
, 2003, “
Tensegrity II. How Structural Networks Influence Cellular Information Processing Networks
,”
J. Cell. Sci.
0021-9533,
116
, pp.
1397
1408
.
14.
Weinbaum
,
S.
,
Zhang
,
X.
,
Han
,
Y.
,
Vink
,
H.
, and
Cowin
,
S.
, 2003, “
Mechanotransduction and Flow Across the Endothelial Glycocalyx
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
7988
7995
.
15.
Garra
,
B.
,
Cespedes
,
E.
,
Ophir
,
J.
,
Spratt
,
S.
,
Zurbier
,
R.
,
Magnant
,
C.
, and
Pannanen
,
M.
, 1997, “
Elastography of Breast Lesions: Initial Clinical Results
,”
Radiology
0033-8419,
202
, pp.
79
86
.
16.
McKnight
,
A.
,
Kugel
,
J.
,
Rossman
,
P.
,
Manduca
,
A.
,
Hartmann
,
L.
, and
Ehman
,
R. L.
, 2002, “
MR Elastography of Breast Cancer: Preliminary Results
,”
AJR, Am. J. Roentgenol.
0361-803X,
178
, pp.
1411
1417
.
17.
Pellot-Barakat
,
C.
,
Sridhar
,
M.
,
Lindfors
,
K.
, and
Insana
,
M.
, 2006, “
Ultrasonic Elasticity Imaging as a Tool for Breast Cancer Diagnosis and Research
,”
Current Medical Imaging Reviews
,
2
, pp.
157
164
.
18.
Lorenzen
,
J.
,
Sinkus
,
R.
,
Biesterfeldt
,
M.
, and
Adam
,
G.
, 2003, “
Menstrual-Cycle Dependence of Breast Parenchyma Elasticity: Estimation With Magnetic Resonance Elastography of Breast Tissue During the Menstrual Cycle
,”
Invest. Radiol.
0020-9996,
38
, pp.
236
240
.
19.
Insana
,
M.
,
Sridhar
,
M.
,
Liu
,
J.
, and
Barakat
,
C.
, 2005, “
Ultrasonic Mechanical Relaxation Imaging and the, Material Science of Breast Cancer
,” in
Proc. IEEE Ultrason. Symp.
, Vol.
2
, pp.
739
742
.
20.
Losa
,
G.
, and
Alini
,
M.
, 1993, “
Sulphated Proteoglycans in the Extracellular Matrix of Human Breast Tissues with Infiltrating Carcinoma
,”
Int. J. Cancer
0020-7136,
54
, pp.
552
557
.
21.
Fung
,
Y.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer
, New York.
22.
Wineman
,
A.
, and
Rajagopal
,
K.
, 2000,
Mechanical Response of Polymers
,
Cambridge University Press
, Cambridge.
23.
Tschoegl
,
N.
, 1989,
Phenomenological Theory of Linear Viscoelastic Behavior
,
Springer
, New York.
24.
Chaturvedi
,
P.
,
Insana
,
M.
, and
Hall
,
T.
, 1998, “
Testing the Limitations of 2-D Companding for Strain Imaging Using Phantoms
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
45
, pp.
1022
1031
.
25.
Purslow
,
P.
,
Wess
,
T.
, and
Hukins
,
D.
, 1998, “
Collagen Orientation and Molecular Spacing During Creep and Stress Relaxation in Soft Connective Tissues
,”
J. Exp. Biol.
0022-0949,
201
, pp.
135
142
.
26.
Hayes
,
W.
,
Keer
,
L.
,
Herrmann
,
G.
, and
Mockros
,
L.
, 1997, “
Dynamic Study of Gelatin Gels by Creep Measurements
,”
Rheol. Acta
0035-4511,
36
, pp.
610
617
.
27.
Higgs
,
P.
, and
Ross-Murphy
,
S.
, 1990, “
Creep Measurements on Gelatin Gels
,”
Int. J. Biol. Macromol.
0141-8130,
12
, pp.
233
240
.
28.
Ferry
,
J.
, 1980,
Viscoelastic Properties of Polymers
, 3rd ed.,
John Wiley and Sons
, New York.
29.
ODonnell
,
M.
,
Skovoroda
,
A.
,
Shapo
,
B.
, and
Emelianov
,
S.
, 1994, “
Internal Displacement and Strain Imaging Using Ultrasonic Speckle Tracking
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
42
, pp.
314
25
.
30.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
, 1991, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
0161-7346,
13
, pp.
111
134
.
31.
Schwarzl
,
F.
, and
Staverman
,
A.
, 1953, “
Higher Approximation Methods for the Relaxation Spectrum From Static and Dynamic Measurements of Visco-Elastic Materials
,”
Appl. Sci. Res., Sect. A
0365-7132,
4
, pp.
127
41
.
32.
Shung
,
K.
,
Smith
,
M.
, and
Tsui
,
B.
, 1992,
Principles of Medical Imaging
,
Academic Press, Inc.
, San Diego.
33.
The loss compliance D̆(ω) (Eq. (10)) for a first-order Voigt model is D̆(ω)=(D1ωT1)∕(1+ω2T12). The spectrum peaks at ω=1∕T1 as found from dD̆(ω)∕dω=0.
34.
To go from the discrete model of Eq. (6) to a continuous distribution of retardance times, we assume ∑ℓ=1LDℓ∕(1+sTℓ) can be written as a uniformly sampled function ∑n=0∞Dn∕(1+snΔτ), where Tℓ=nΔτ for some integer value n. Using sampling theory, ∑n=0∞Dn∕(1+snΔτ)=limΔτ→0∫0∞[D(τ)∕(1+sτ)]Δτ∑δ(τ−nΔτ)=∫0∞dτDs(τ)∕(1+sτ). Ds has units [Pas]−1.
35.
Bot
,
A.
,
van Amerongen
,
I.
,
Groot
,
R.
,
Hoekstra
,
N.
, and
Agterof
,
W.
, 1996, “
Large Deformation Rheology of Gelatin Gels
,”
Polym. Gels Networks
0966-7822,
4
, pp.
189
227
.
36.
Djabourov
,
M.
,
Bonnet
,
N.
,
Kaplan
,
H.
,
Favard
,
N.
,
Favard
,
P.
,
Lechaire
,
J.
, and
Maillard
,
M.
, 1993, “
3D Analysis of Gelatin Gel Networks From Transmission Electron Microscopy Imaging
,”
J. Phys. II
1155-4312,
3
, pp.
611
624
.
37.
Madsen
,
E.
,
Hobson
,
M.
,
Shi
,
H.
,
Varghese
,
T.
, and
Frank
,
G.
, 2005, “
Tissue-Mimicking Agar/Gelatin Materials for Use in Heterogeneous Elastography Phantoms
,”
Phys. Med. Biol.
0031-9155,
50
, pp.
5597
5618
.
38.
Pezron
,
I.
, and
Djabourov
,
M.
, 1990, “
X-ray Diffraction of Gelatin Fibers in the Dry and Swollen States
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
28
, pp.
1823
1839
.
39.
Ward
,
A.
, 1954, “
The Physical Properties of Gelatin Solutions and Gels
,”
Br. J. Appl. Phys.
0508-3443,
5
, pp.
85
90
.
40.
Veis
,
A.
, 1964,
The Macromolecular Chemistry of Gelatin
,
Academic Press
, New York.
41.
Stoeckelhuber
,
M.
,
Stumpf
,
P.
,
Hoefter
,
E.
, and
Welsch
,
U.
, 2002, “
Proteoglycan-Collagen Associations in the Non-lactating Human Breast Connective Tissue During the Menstrual Cycle
,”
Histochem. Cell Biol.
0948-6143,
118
, pp.
221
230
.
42.
Yakimets
,
I.
,
Wellner
,
N.
,
Smith
,
A.
,
Wilson
,
R.
,
Farhat
,
I.
, and
Mitchell
,
J.
, 2005, “
Mechanical Properties With Respect to Water Content of Gelatin Films in Glassy State
,”
Polymer
0032-3861,
46
, pp.
12577
12585
.
43.
Tanzer
,
M.
, 1968, “
Intermolecular Cross-Links in Reconstituted Collagen Fibrils
,”
J. Biol. Chem.
0021-9258,
243
, pp.
4045
4054
.
44.
Hall
,
T.
,
Bilgen
,
M.
,
Insana
,
M.
, and
Krouskop
,
T.
, 1997, “
Phantom Materials for Elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
44
, pp.
1355
1365
.
45.
Gilsenan
,
P.
, and
Ross-Murphy
,
S.
, 2001, “
Shear Creep of Gelatin Gels From Mammalian and Piscine Collagens
,”
Int. J. Biol. Macromol.
0141-8130,
29
, pp.
53
61
.
46.
Sridhar
,
M.
, and
Insana
,
M.
, 2005, “
Imaging Microenvironment With Ultrasound
,” in
Lecture Notes in Computer Science, IPMI 05
,
Springer
, New York, Vol.
5373
, pp.
202
211
.
47.
Hayes
,
W.
,
Keer
,
L.
,
Herrmann
,
G.
, and
Mockros
,
L.
, 1972, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
0021-9290,
5
, pp.
541
551
.
48.
Press
,
W.
,
Flannery
,
B.
,
Teukolsky
,
S.
, and
Vetterling
,
W.
, 1986,
Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
, New York.
49.
Bilgen
,
M.
, and
Insana
,
M.
, 1998, “
Elastostatics of a Spherical Inclusion in Homogeneous Biological Media
,”
Phys. Med. Biol.
0031-9155,
43
, pp.
1
20
.
50.
Knapp
,
D.
,
Barocas
,
V.
, and
Moon
,
A.
, 1997, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
0148-6055,
41
, pp.
971
993
.
51.
Bagley
,
R.
, 1983, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
0148-6055,
27
, pp.
201
210
.
52.
Ouis
,
D.
, 2004, “
Characterization of Polymers by Means of a Standard Viscoelastic Model and Fractional Derivate Calculus
,”
Int. J. Polym. Mater.
0091-4037,
53
, pp.
633
644
.
53.
Welch
,
S.
,
Rorrer
,
R.
, and
Duren
,
R.
, 1999, “
Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials
,”
Mech. Time-Depend. Mater.
1385-2000,
3
, pp.
279
303
.
54.
Samani
,
A.
, and
Plewes
,
D.
, 2004, “
A Method to Measure the Hyperelastic Parameters of ex vivo Breast Tissue Samples
,”
Phys. Med. Biol.
0031-9155,
49
, pp.
4395
4405
.
55.
Maurice
,
R.
, and
Bertrand
,
M.
, 1999, “
Lagrangian Speckle Model and Tissue-Motion Estimation-Theory
,”
IEEE Trans. Med. Imaging
0278-0062,
18
, pp.
593
603
.
You do not currently have access to this content.