A strain energy function for finite deformations is developed that has the capability to describe the nonlinear, anisotropic, and asymmetric mechanical response that is typical of articular cartilage. In particular, the bimodular feature is employed by including strain energy terms that are only mechanically active when the corresponding fiber directions are in tension. Furthermore, the strain energy function is a polyconvex function of the deformation gradient tensor so that it meets material stability criteria. A novel feature of the model is the use of bimodular and polyconvex “strong interaction terms” for the strain invariants of orthotropic materials. Several regression analyses are performed using a hypothetical experimental dataset that captures the anisotropic and asymmetric behavior of articular cartilage. The results suggest that the main advantage of a model employing the strong interaction terms is to provide the capability for modeling anisotropic and asymmetric Poisson’s ratios, as well as axial stress–axial strain responses, in tension and compression for finite deformations.

1.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
113
, pp.
245
258
.
2.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R. A.
,
Wachtel
,
E.
, and
Maroudas
,
A.
, 1998, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
0003-9861,
351
, pp.
207
219
.
3.
Venn
,
M. F.
, and
Maroudas
,
A.
, 1977, “
Chemical Composition and Swelling of Normal and Osteoarthritic Femoral Head Cartilage. I. Chemical Composition
,”
Ann. Rheum. Dis.
0003-4967,
36
, pp.
121
129
.
4.
Mow
,
V. C.
, and
Ratcliffe
,
A.
, 1997, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Raven Press
,
New York
, pp.
113
178
.
5.
Woo
,
S. L.-Y.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
, 1976, “
Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
0021-9290,
9
, pp.
785
791
.
6.
Woo
,
S. L.-Y.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1979, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
0021-9290,
12
, pp.
437
446
.
7.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
, pp.
379
392
.
8.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
576
586
.
9.
Laasanen
,
M.
,
Toyras
,
J.
,
Korhonen
,
R.
,
Rieppo
,
J.
,
Saarakkala
,
S.
,
Nieminen
,
M.
,
Hirvonen
,
J.
, and
Jurvelin
,
J. S.
, 2003, “
Biomechanical Properties of Knee Articular Cartilage
,”
Biorheology
0006-355X,
40
, pp.
133
140
.
10.
Wang
,
C. C.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
339
353
.
11.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 1999, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations with Tissue Failure
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1037
1047
.
12.
Krishnan
,
R.
,
Park
,
S.
,
Eckstein
,
F.
, and
Ateshian
,
G. A.
, 2003, “
Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, but do not Provide a Homogeneous State of Stress
,”
J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
569
577
.
13.
Chang
,
D. G.
,
Lottman
,
L. M.
,
Chen
,
A. C.
,
Schinagl
,
R. M.
,
Albrecht
,
D. R.
,
Pedowitz
,
R. A.
,
Brossman
,
J.
,
Frank
,
L. R.
, and
Sah
,
R. L.
, 1999, “
The Depth-Dependent, Multi-axial Properties of Aged Human Patellar Cartilage in Tension
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
24
, p.
644
.
14.
Korhonen
,
R. K.
,
Toyras
,
J.
,
Nieminen
,
M. T.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2001, “
Effect of Ionic Environment on the Compression-Tension Nonlinearity of Articular Cartilage in the Direction Perpendicular to Articular Surface
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
0149-6433,
26
, p.
439
.
15.
Elliot
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
, 2002, “
Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
223
228
.
16.
Charlebois
,
M.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
, 2004, “
Nonlinear Tensile Properties of Bovine Articular Cartilage and Their Variation with Age and Depth
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
129
137
.
17.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
, pp.
1251
1261
.
18.
Huang
,
C. Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
809
.
19.
Ficklin
,
T.
,
Thomas
,
G.
,
Chen
,
A.
,
Sah
,
R.
,
Davol
,
A.
, and
Klisch
,
S.
, 2006, “
Development of an Experimental Protocol to Measure Anisotropic Material Properties of Bovine Articular Cartilage
,”
Proceedings Summer Bioengineering Conference, ASME
,
Amelia Island
,
FL
.
20.
Curnier
,
A.
,
He
,
Q. C.
, and
Zysset
,
P.
, 1995, “
Conewise Linear Elastic Materials
,”
J. Elast.
0374-3535,
37
, pp.
1
38
.
21.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
264
275
.
22.
Baer
,
A. E.
,
Laursen
,
T. A.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 2004, “
The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
1
11
.
23.
Klisch
,
S. M.
, 2006, “
A Bimodular Theory for Finite Deformations: Comparison of Orthotropic Second-order and Exponential Stress Constitutive Equations for Articular Cartilage
,”
Biomech. Model. Mechanobiol.
,
5
(
2–3
), pp.
90
101
.
24.
Ball
,
J. M.
, 1977, “
Convexity Conditions and Existence Theorems in Non-linear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
63
, pp.
337
403
.
25.
Klisch
,
S. M.
,
Sah
,
R. L.
, and
Davol
,
A.
, 2006, “
Bimodular-Orthotropic-Polyconvex Strain Energy Functions for the Collagen-Proteoglycan Solid Matrix of Articular Cartilage
,”
Proceedings Summer Bioengineering Conference, ASME
,
Amelia Island
,
FL
.
26.
Schroder
,
J.
, and
Neff
,
P.
, 2003, “
Invariant Formulation of Hyperelastic Transverse Isotropy Based on Polyconvex Free Energy Functions
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
401
445
.
27.
Itskov
,
M.
,
Ehret
,
A. E.
, and
Mavrilas
,
D.
, 2006, “
A Polyconvex Anisotropic Strain-Energy Function for Soft Collagenous Tissues
,”
Biomech. Model. Mechanobiol.
,
5
(
1
), pp.
17
26
.
28.
Wagner
,
D. R.
,
Reiser
,
K. M.
, and
Lotz
,
J. C.
, 2006, “
Glycation Increases Human Annulus Fibrosus Stiffness in Both Experimental Measurements and Theoretical Predictions
,”
J. Biomech.
0021-9290,
39
, pp.
1021
1029
.
29.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
,
New York
.
30.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
0021-9290,
32
(
10
), pp.
1027
1036
.
31.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2000, “
A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
173
179
.
32.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A.
, 2001, “
An Anisotropic Constitutive Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
209
230
.
33.
Spencer
,
A. J. M.
, 1971, “
Theory of Invariants
,”
Continuum Physics
,
A. C.
Eringen
, ed.,
Academic
,
New York
, pp.
240
353
.
34.
Schroder
,
J.
,
Neff
,
P.
, and
Balzani
,
D.
, 2005, “
A Variational Approach for Materially Stable Anisotropic Hyperelasticity
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4352
4371
.
35.
Wagner
,
D. R.
, 2002, “
A Mechanistic Strain Energy Function and Experimental Results for the Human Annulus Fibrosus
,” Ph.D. thesis, U. C. Berkeley, Berkeley, CA.
36.
Itskov
,
M.
, and
Aksel
,
N.
, 2004, “
A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3833
3848
.
37.
Chang
,
D. G.
, 1999, “
Structure and Function Relationships of Articular Cartilage in Osteoarthritis
,” Ph.D. thesis, University of California, San Diego, La Jolla, CA.
38.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
, 1997, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
0021-9290,
30
, pp.
235
241
.
39.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J. S.
, 2000, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
0021-9290,
33
(
9
), pp.
1049
1054
.
40.
Williamson
,
A. K.
,
Chen
,
A. C.
,
Masuda
,
K.
,
Thonar
,
E. J.-M. A.
, and
Sah
,
R. L.
, 2003, “
Tensile Mechanical Properties of Bovine Articular Cartilage: Variations with Growth and Relationships to Collagen Network Components
,”
J. Orthop. Res.
0736-0266,
21
, pp.
872
880
.
41.
Broom
,
N. D.
, and
Poole
,
C. A.
, 1983, “
Articular Cartilage Collagen and Proteoglycans. Their Functional Interdependency
,”
Arthritis Rheum.
0004-3591,
26
(
9
), pp.
1111
1119
.
42.
Vynios
,
D. H.
,
Papageorgakopoulou
,
N.
,
Sazakli
,
H.
, and
Tsiganos
,
C. P.
, 2001, “
The Interactions of Cartilage Proteoglycans with Collagens are Determined by Their Structures
,”
Biochimie
0300-9084,
83
, pp.
899
906
.
43.
Hendrickx
,
S.
,
Thomas
,
P.
,
Preston
,
B.
, and
Stanton
,
P.
, 2001, “
Partial Characterization of Matrix Components Interacting with Cartilage Proteoglycans
,”
Arch. Biochem. Biophys.
0003-9861,
390
(
2
), pp.
186
194
.
44.
Jeffery
,
A. K.
,
Blunn
,
G. W.
,
Archer
,
C. W.
, and
Bentley
,
G.
, 1991, “
Three-Dimensional Collagen Architecture in Bovine Articular Cartilage
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X
73-B
,
795
801
.
45.
Benninghoff
,
A.
, 1925, “
Form und Bau der Gelenkknorpel in Ihren Beziehungen zur Funktion. Zweiter Teil: der Aufbau des Gelenkknorpels in Seinen Beziehungen zur Funktion
,”
Z. Zellforsch Mikrosk Anat.
0044-3794,
2
, pp.
783
862
.
46.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
, pp.
1
12
.
47.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
, pp.
15
35
.
48.
Anderson
,
A. F.
,
Ellis
,
B. J.
,
Maas
,
S. A.
,
Peters
,
C. L.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
, 2006, “
Experimental Measurement and Finite Element Prediction of Cartilage Contact Pressures in the Human Hip
,”
Proceedings ASME Summer Bioengineering Conference
,
Amelia Island
,
FL
.
49.
Klisch
,
S. M.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2000, “
A Growth Mixture Theory for Cartilage
,”
Mechanics in Biology
,
J.
Casey
and
G.
Bao
, eds., ASME, AMD-242, New York, pp.
229
242
.
50.
Klisch
,
S. M.
,
Van Dyke
,
T.
, and
Hoger
,
A.
, 2001, “
A Theory of Volumetric Growth for Compressible Elastic Materials
,”
Math. Mech. Solids
1081-2865,
6
, pp.
551
575
.
51.
Klisch
,
S. M.
, and
Hoger
,
A.
, 2003, “
Volumetric Growth of Thermoelastic Materials and Mixtures
,”
Math. Mech. Solids
1081-2865,
8
, pp.
377
402
.
52.
Klisch
,
S. M.
,
Chen
,
S. S.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2003, “
A Growth Mixture Theory for Cartilage with Applications to Growth-Related Experiments on Cartilage Explants
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
169
179
.
53.
Klisch
,
S. M.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2005, “
A Cartilage Growth Mixture Model for Infinitesimal Strains: Solutions of Boundary-Value Problems Related to In Vitro Growth Experiments
,”
Biomech. Model. Mechanobiol.
,
3
(
4
), pp.
209
223
.
54.
Davol
,
A.
,
Bingham
,
M. S.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
, 2007, “
A Nonlinear Finite Element Model of Cartilage Growth
,”
Biomech. Model. Mechanobiol.
, in press.
55.
Smith
,
G. D.
,
Knutsen
,
G.
, and
Richardson
,
J. B.
, 2005, “
A Clincial Review of Cartilage Repair Techniques
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355
87B
(
4
), pp.
445
449
.
You do not currently have access to this content.