We explored how hip joint actuation can be used to control locomotive bifurcations and chaos in a passive dynamic walking model that negotiated a slightly sloped surface . With no hip actuation, our passive dynamic walking model was capable of producing a chaotic locomotive pattern when the ramp angle was . Systematic alterations in hip actuation resulted in rapid transition to any locomotive pattern available in the chaotic attractor and induced stability at ramp angles that were previously considered unstable. Our results detail how chaos can be used as a control scheme for locomotion.
Issue Section:
Joint/Whole Body
Keywords:
gait analysis,
bone,
bifurcation,
biocontrol,
locomotion,
gait,
chaos,
fractals,
variability,
passive dynamics
1.
Clark
, J. E.
, and Phillips
, S. J.
, 1993, “A Longitudinal Study of Intralimb Coordination in the First Year of Independent Walking: A Dynamical Systems Analysis
,” Child Dev.
0009-3920, 64
, pp. 1143
–1157
.2.
Hausdorff
, J. M.
, Peng
, C. K.
, Ladin
, Z.
, Wei
, J. Y.
, and Goldberger
, A. L.
, 1995, “Is Walking a Random Walk? Evidence for Long-Range Correlations in Stride Interval of Human Gait
,” J. Appl. Physiol.
8750-7587, 78
(1
), pp. 349
–358
.3.
Buzzi
, U. H.
, Stergiou
, N.
, Kurz
, M. J.
, Hageman
, P. A.
, and Heidel
, J.
, 2003, “Nonlinear Dynamics Indicates Aging Affects Variability During Gait
,” Chung Hua Kou Chiang Ko Tsa Chih
0412-4014, 18
, pp. 435
–443
.4.
Dingwell
, J. B.
, Cusumano
, J. P.
, Sternad
, D.
, and Cavanagh
, P. R.
, 2000, “Slower Speeds in Patients With Diabetic Neurophathy Lead to Improved Local Dynamic Stability of Continuous Overground Walking
,” J. Biomech.
0021-9290, 33
, pp. 1269
–1277
.5.
Hausdorff
, J. M.
, Mitchell
, S. L.
, Firtion
, R.
, Peng
, C. K.
, Cudkowicz
, M. E.
, Wei
, J. Y.
, and Goldberger
, A. L.
, 1997, “Altered Fractal Dynamics of Gait: Reduced Stride-Interval Correclations With Aging and Huntington’s Disease
,” J. Appl. Physiol.
8750-7587, 82
(1
), pp. 262
–269
.6.
West
, B. J.
, and Griffin
, L.
, 1998, “Allometric Control of Human Gait
,” Fractals
0218-348X, 6
(2
), pp. 101
–108
.7.
West
, B. L.
, and Griffin
, L.
, 1999, “Allometric Control, Inverse Power Laws and Human Gait
,” Chaos, Solitons Fractals
0960-0779, 10
(9
), pp. 1519
–1527
.8.
Li
, T. Y.
, and Yorke
, J. A.
, 1975, “Period Three Implies Chaos
,” Am. Math. Monthly
, 82
, pp. 985
–992
.9.
Allgood
, K. T.
, Sauer
, T. D.
, and Yorke
, J. A.
, 1997, Chaos: An Introduction to Dynamical Systems
, Springer
, New York
.10.
Baker
, G. L.
, and Gollub
, J. P.
, 1996, Chaotic Dynamics
, Cambridge University Press
, Cambridge, England
.11.
Goldberger
, A. L.
, Amaral
, L. A. N.
, Hausdorff
, J. M.
, Ivanov
, P. C.
, Peng
, C. K.
, and Stanley
, H. E.
, 2002, “Fractal Dynamics in Physiology: Alterations With Disease and Aging
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 99
(1
), pp. 2466
–2472
.12.
Starrett
, J.
, and Tagg
, R.
, 1995, “Control of a Chaotic Parametrically Driven Pendulum
,” Phys. Rev. Lett.
0031-9007, 74
(11
), pp. 1974
–1977
.13.
Ott
, E.
, Grebogi
, C.
, and Yorke
, J. A.
, 1990, “Controlling Chaos
,” Phys. Rev. Lett.
0031-9007, 64
(11
), pp. 1196
–1199
.14.
Shinbrot
, T.
, Grebogi
, C.
, Ott
, E.
, and Yorke
, J. A.
, 1993, “Using Small Perturbations to Control Chaos
,” Nature (London)
0028-0836, 363
, pp. 411
–417
.15.
Abarbanel
, H. D. I.
, 1996, Analysis of Observed Chaotic Data
, Springer
, New York
.16.
Kuo
, A. D.
, 2001, “A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,” ASME J. Biomech. Eng.
0148-0731, 123
, pp. 264
–269
.17.
Kuo
, A. D.
, 2002, “Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,” ASME J. Biomech. Eng.
0148-0731, 124
, pp. 113
–120
.18.
Garcia
, M.
, Chatterjee
, A.
, Ruina
, A.
, and Coleman
, M.
, 1998, “The Simplest Walking Model: Stability, Complexity, and Scaling
,” ASME J. Biomech. Eng.
0148-0731, 120
(2
), pp. 281
–288
.19.
McGeer
, T. A.
, 1990, “Passive Dynamic Walking
,” Int. J. Robot. Res.
0278-3649, 9
(2
), pp. 62
–82
.20.
Stergiou
, N.
, Buzzi
, U. H.
, Kurz
, M. J.
, and Heidel
, J.
, 2003, “Nonlinear Tools in Human Movement
,” Innovative Analysis of Human Movement
, N.
Stergiou
, ed., Human Kinetics
, Champaign, IL
, pp. 63
–90
.21.
Sprott
, J. C.
, and Rowlands
, G. R.
, 1995, Chaos Data Analyzer
, AIP
, New York
.22.
Feder
, J.
, 1988, Fractals
, Plenum Press
, New York
.23.
Delignieres
, D.
, Deschamps
, T.
, Legros
, A.
, and Cailou
, N.
, 2003, “A Methodological Note on Nonlinear Time Series Analysis: Is the Open- and Closed-Loop Model of Collins and De Luca (1993) a Statistical Artifact?
,” J. Motor Behav.
0022-2895, 35
(1
), pp. 86
–96
.24.
Winter
, D. A.
, Patla
, A. E.
, Frank
, J. S.
, and Walt
, S. E.
, 1990, “Biomechanical Walking Pattern Changes in the Fit and Healthy Elderly
,” Phys. Ther.
0031-9023, 70
, pp. 340
–347
.25.
Winter
, D. A.
, 1991, The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological
, University of Waterloo Press
, Waterloo
.26.
Judge
, J. O.
, Davis
, R. B.
, and Ounpuu
, S.
, 1996, “Step Length Reductions in Advanced Age: The Role of Ankle and Hip Kinetics
,” J. Gerontol., Ser. A
1079-5006, 51A
(6
), pp. 303
–312
.27.
Kerrigan
, D. C.
, Todd
, M. K.
, Croce
, U. D.
, Lipisitz
, L. A.
, and Collins
, J. A.
, 1998, “Biomechanical Gait Alterations Independent of Speed in Healthy Elderly: Evidence for Specific Limiting Impairments
,” Arch. Phys. Med. Rehabil.
0003-9993, 79
, pp. 317
–322
.28.
Raibert
, M. H.
, 1986, Legged Robots that Balance
, MIT Press
, Cambridge, MA
.29.
Raibert
, M. H.
, and Hodgins
, J. K.
, 1993, “Legged Robots
,” Biological Neural Networks in Invertebrate Neuroethology and Robotics
, R. D.
Beer
, R. E.
Ritzmann
, and T.
McKenna
, eds., Academic Press
, New York
, pp. 319
–354
.30.
Anderson
, F.
, and Pandy
, M. G.
, 2001, “Dynamic Optimization of Human Walking
,” ASME J. Biomech. Eng.
0148-0731, 123
, pp. 381
–390
.31.
Neptune
, R. R.
, Kautz
, S. A.
, and Zajac
, F. E.
, 2001, “Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,” J. Biomech.
0021-9290, 34
, pp. 1387
–1398
.32.
Pandy
, M. G.
, 2001, “Computer Modeling and Simulation of Human Movement
,” Annu. Rev. Biomed. Eng.
1523-9829, 3
, pp. 245
–273
.33.
Pandy
, M. G.
, 2003, “Simple and Complex Models for Studying Muscle Function in Walking
,” Philos. Trans. R. Soc. London, Ser. B
0962-8436, 358
, pp. 1501
–1509
.34.
Alexander
, R. M.
, 1995, “Simple Models of Human Movement
,” Appl. Mech. Rev.
0003-6900, 48
(8
), pp. 461
–469
.35.
Full
, R. J.
, and Koditschek
, D. E.
, 1999, “Templates and Anchors: Neuromechanical Hypothesis of Legged Locomotion on Land
,” J. Exp. Biol.
0022-0949, 202
, pp. 3325
–3332
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.