We explored how hip joint actuation can be used to control locomotive bifurcations and chaos in a passive dynamic walking model that negotiated a slightly sloped surface (γ<0.019rad). With no hip actuation, our passive dynamic walking model was capable of producing a chaotic locomotive pattern when the ramp angle was 0.01839rad<γ<0.0190rad. Systematic alterations in hip actuation resulted in rapid transition to any locomotive pattern available in the chaotic attractor and induced stability at ramp angles that were previously considered unstable. Our results detail how chaos can be used as a control scheme for locomotion.

1.
Clark
,
J. E.
, and
Phillips
,
S. J.
, 1993, “
A Longitudinal Study of Intralimb Coordination in the First Year of Independent Walking: A Dynamical Systems Analysis
,”
Child Dev.
0009-3920,
64
, pp.
1143
1157
.
2.
Hausdorff
,
J. M.
,
Peng
,
C. K.
,
Ladin
,
Z.
,
Wei
,
J. Y.
, and
Goldberger
,
A. L.
, 1995, “
Is Walking a Random Walk? Evidence for Long-Range Correlations in Stride Interval of Human Gait
,”
J. Appl. Physiol.
8750-7587,
78
(
1
), pp.
349
358
.
3.
Buzzi
,
U. H.
,
Stergiou
,
N.
,
Kurz
,
M. J.
,
Hageman
,
P. A.
, and
Heidel
,
J.
, 2003, “
Nonlinear Dynamics Indicates Aging Affects Variability During Gait
,”
Chung Hua Kou Chiang Ko Tsa Chih
0412-4014,
18
, pp.
435
443
.
4.
Dingwell
,
J. B.
,
Cusumano
,
J. P.
,
Sternad
,
D.
, and
Cavanagh
,
P. R.
, 2000, “
Slower Speeds in Patients With Diabetic Neurophathy Lead to Improved Local Dynamic Stability of Continuous Overground Walking
,”
J. Biomech.
0021-9290,
33
, pp.
1269
1277
.
5.
Hausdorff
,
J. M.
,
Mitchell
,
S. L.
,
Firtion
,
R.
,
Peng
,
C. K.
,
Cudkowicz
,
M. E.
,
Wei
,
J. Y.
, and
Goldberger
,
A. L.
, 1997, “
Altered Fractal Dynamics of Gait: Reduced Stride-Interval Correclations With Aging and Huntington’s Disease
,”
J. Appl. Physiol.
8750-7587,
82
(
1
), pp.
262
269
.
6.
West
,
B. J.
, and
Griffin
,
L.
, 1998, “
Allometric Control of Human Gait
,”
Fractals
0218-348X,
6
(
2
), pp.
101
108
.
7.
West
,
B. L.
, and
Griffin
,
L.
, 1999, “
Allometric Control, Inverse Power Laws and Human Gait
,”
Chaos, Solitons Fractals
0960-0779,
10
(
9
), pp.
1519
1527
.
8.
Li
,
T. Y.
, and
Yorke
,
J. A.
, 1975, “
Period Three Implies Chaos
,”
Am. Math. Monthly
,
82
, pp.
985
992
.
9.
Allgood
,
K. T.
,
Sauer
,
T. D.
, and
Yorke
,
J. A.
, 1997,
Chaos: An Introduction to Dynamical Systems
,
Springer
,
New York
.
10.
Baker
,
G. L.
, and
Gollub
,
J. P.
, 1996,
Chaotic Dynamics
,
Cambridge University Press
,
Cambridge, England
.
11.
Goldberger
,
A. L.
,
Amaral
,
L. A. N.
,
Hausdorff
,
J. M.
,
Ivanov
,
P. C.
,
Peng
,
C. K.
, and
Stanley
,
H. E.
, 2002, “
Fractal Dynamics in Physiology: Alterations With Disease and Aging
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
1
), pp.
2466
2472
.
12.
Starrett
,
J.
, and
Tagg
,
R.
, 1995, “
Control of a Chaotic Parametrically Driven Pendulum
,”
Phys. Rev. Lett.
0031-9007,
74
(
11
), pp.
1974
1977
.
13.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
(
11
), pp.
1196
1199
.
14.
Shinbrot
,
T.
,
Grebogi
,
C.
,
Ott
,
E.
, and
Yorke
,
J. A.
, 1993, “
Using Small Perturbations to Control Chaos
,”
Nature (London)
0028-0836,
363
, pp.
411
417
.
15.
Abarbanel
,
H. D. I.
, 1996,
Analysis of Observed Chaotic Data
,
Springer
,
New York
.
16.
Kuo
,
A. D.
, 2001, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
264
269
.
17.
Kuo
,
A. D.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
113
120
.
18.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
281
288
.
19.
McGeer
,
T. A.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
(
2
), pp.
62
82
.
20.
Stergiou
,
N.
,
Buzzi
,
U. H.
,
Kurz
,
M. J.
, and
Heidel
,
J.
, 2003, “
Nonlinear Tools in Human Movement
,”
Innovative Analysis of Human Movement
,
N.
Stergiou
, ed.,
Human Kinetics
,
Champaign, IL
, pp.
63
90
.
21.
Sprott
,
J. C.
, and
Rowlands
,
G. R.
, 1995,
Chaos Data Analyzer
,
AIP
,
New York
.
22.
Feder
,
J.
, 1988,
Fractals
,
Plenum Press
,
New York
.
23.
Delignieres
,
D.
,
Deschamps
,
T.
,
Legros
,
A.
, and
Cailou
,
N.
, 2003, “
A Methodological Note on Nonlinear Time Series Analysis: Is the Open- and Closed-Loop Model of Collins and De Luca (1993) a Statistical Artifact?
,”
J. Motor Behav.
0022-2895,
35
(
1
), pp.
86
96
.
24.
Winter
,
D. A.
,
Patla
,
A. E.
,
Frank
,
J. S.
, and
Walt
,
S. E.
, 1990, “
Biomechanical Walking Pattern Changes in the Fit and Healthy Elderly
,”
Phys. Ther.
0031-9023,
70
, pp.
340
347
.
25.
Winter
,
D. A.
, 1991,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological
,
University of Waterloo Press
,
Waterloo
.
26.
Judge
,
J. O.
,
Davis
,
R. B.
, and
Ounpuu
,
S.
, 1996, “
Step Length Reductions in Advanced Age: The Role of Ankle and Hip Kinetics
,”
J. Gerontol., Ser. A
1079-5006,
51A
(
6
), pp.
303
312
.
27.
Kerrigan
,
D. C.
,
Todd
,
M. K.
,
Croce
,
U. D.
,
Lipisitz
,
L. A.
, and
Collins
,
J. A.
, 1998, “
Biomechanical Gait Alterations Independent of Speed in Healthy Elderly: Evidence for Specific Limiting Impairments
,”
Arch. Phys. Med. Rehabil.
0003-9993,
79
, pp.
317
322
.
28.
Raibert
,
M. H.
, 1986,
Legged Robots that Balance
,
MIT Press
,
Cambridge, MA
.
29.
Raibert
,
M. H.
, and
Hodgins
,
J. K.
, 1993, “
Legged Robots
,”
Biological Neural Networks in Invertebrate Neuroethology and Robotics
,
R. D.
Beer
,
R. E.
Ritzmann
, and
T.
McKenna
, eds.,
Academic Press
,
New York
, pp.
319
354
.
30.
Anderson
,
F.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
381
390
.
31.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
, 2001, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
0021-9290,
34
, pp.
1387
1398
.
32.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
33.
Pandy
,
M. G.
, 2003, “
Simple and Complex Models for Studying Muscle Function in Walking
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
358
, pp.
1501
1509
.
34.
Alexander
,
R. M.
, 1995, “
Simple Models of Human Movement
,”
Appl. Mech. Rev.
0003-6900,
48
(
8
), pp.
461
469
.
35.
Full
,
R. J.
, and
Koditschek
,
D. E.
, 1999, “
Templates and Anchors: Neuromechanical Hypothesis of Legged Locomotion on Land
,”
J. Exp. Biol.
0022-0949,
202
, pp.
3325
3332
.
You do not currently have access to this content.