The fundamental study of blood flow past a circular cylinder filled with an oxygen source is investigated as a building block for an artificial lung. The Casson constitutive equation is used to describe the shear-thinning and yield stress properties of blood. The presence of hemoglobin is also considered. Far from the cylinder, a pulsatile blood flow in the x direction is prescribed, represented by a time periodic (sinusoidal) component superimposed on a steady velocity. The dimensionless parameters of interest for the characterization of the flow and transport are the steady Reynolds number (Re), Womersley parameter (α), pulsation amplitude (A), and the Schmidt number (Sc). The Hill equation is used to describe the saturation curve of hemoglobin with oxygen. Two different feed-gas mixtures were considered: pure O2 and air. The flow and concentration fields were computed for Re=5, 10, and 40, 0A0.75, α=0.25, 0.4, and Schmidt number, Sc=1000. The Casson fluid properties result in reduced recirculations (when present) downstream of the cylinder as compared to a Newtonian fluid. These vortices oscillate in size and strength as A and α are varied. Hemoglobin enhances mass transport and is especially important for an air feed which is dominated by oxyhemoglobin dispersion near the cylinder. For a pure O2 feed, oxygen transport in the plasma dominates near the cylinder. Maximum oxygen transport is achieved by operating near steady flow (small A) for both feed-gas mixtures. The time averaged Sherwood number, Sh̿, is found to be largely influenced by the steady Reynolds number, increasing as Re increases and decreasing with A. Little change is observed with varying α for the ranges investigated. The effect of pulsatility on Sh̿ is greater at larger Re. Increasing Re aids transport, but yields a higher cylinder drag force and shear stresses on the cylinder surface which are potentially undesirable.

1.
Arcasoy
,
S. M.
, and
Kotloff
,
R. M.
, 1999, “
Medical Progress—Lung Transplantation
,”
N. Engl. J. Med.
0028-4793,
340
(
14
), pp.
1081
1091
.
2.
Haft
,
J. W.
,
Griffith
,
B. P.
,
Hirschl
,
R. B.
, and
Bartlett
,
R. H.
, 2002, “
Results of an Artificial-Lung Survey to Lung Transplant Program Directors
,”
J. Heart Lung Transplant
1053-2498,
21
(
4
), pp.
467
473
.
3.
Lick
,
S. D.
, and
Zwischenberger
,
J. B.
, 2004, “
Artificial Lung: Bench Toward Bedside
,”
ASAIO J.
1058-2916,
50
(
1
), pp.
2
5
.
4.
Zwischenberger
,
J. B.
,
Anderson
,
C. M.
,
Cook
,
K. E.
,
Lick
,
S. D.
,
Mockros
,
L. F.
, and
Bartlett
,
R. H.
, 2001, “
Development of an Implantable Artificial Lung: Challenges and Progress
,”
ASAIO J.
1058-2916,
47
(
4
), pp.
316
320
.
5.
Zwischenberger
,
J. B.
, and
Alpard
,
S. K.
, 2002, “
Artificial Lungs: A New Inspiration
,”
Perfusion
0267-6591,
17
(
4
), pp.
253
268
.
6.
Zierenberg
,
J. R.
,
Fujioka
,
H.
,
Suresh
,
V.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
, 2006, “
Pulsatile Flow and Mass Transport Past a Circular Cylinder
,”
Phys. Fluids
1070-6631,
18
(
1
), p.
013102
.
7.
Chan
,
K. Y.
,
Fujioka
,
H.
,
Bartlett
,
R. H.
,
Hirschl
,
R. B.
, and
Grotberg
,
J. B.
, 2006, “
Pulsatile Flow and Mass Transport Over an Array of Cylinders: Gas Transfer in a Cardiac-Driven Artificial Lung
,”
J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
85
96
.
8.
Boschetti
,
F.
,
Cook
,
K. E.
,
Perlman
,
C. E.
, and
Mockros
,
L. F.
, 2003, “
Blood Flow Pulsatility Effects Upon Oxygen Transfer in Artificial Lungs
,”
ASAIO J.
1058-2916,
49
(
6
), pp.
678
686
.
9.
Pennati
,
G.
,
Fiore
,
G. B.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
,
Galavotti
,
D.
, and
Fini
,
M.
, 1998, “
Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator During Six-Hour In Vitro Perfusion with Steady and with Pulsatile Blood Flow
,”
Int. J. Artif. Organs
0391-3988,
21
(
2
), pp.
97
106
.
10.
Fiore
,
G. B.
,
Pennati
,
G.
,
Inzoli
,
F.
,
Mastrantonio
,
F.
, and
Galavotti
,
D.
, 1998, “
Effects of Blood Flow Pulse Frequency on Mass Transfer Efficiency of a Commercial Hollow Fibre Oxygenator
,”
Int. J. Artif. Organs
0391-3988,
21
(
9
), pp.
535
541
.
11.
Hill
,
E. P.
,
Power
,
G. G.
, and
Longo
,
L. D.
, 1973, “
Mathematical Simulation of Pulmonary O2 and CO2 Exchange
,”
Am. J. Physiol.
0002-9513,
224
(
4
), pp.
904
917
.
12.
Huang
,
N. S.
, and
Hellums
,
J. D.
, 1994, “
A Theoretical-Model for Gas-Transport and Acid/Base Regulation by Blood Flowing in Microvessels
,”
Microvasc. Res.
0026-2862,
48
(
3
), pp.
364
388
.
13.
Roughton
,
F. J. W.
, 1964, “
Transport of Oxygen and Carbon Dioxide
,” in
Handbook of Physiology: Respiration
W. O.
Fenn
and
H.
Rahn
, eds.,
American Physiological Society
, Washington, D.C., pp.
767
825
.
14.
Buerk
,
D. G.
, and
Bridges
,
E. W.
, 1986, “
A Simplified Algorithm for Computing the Variation in Oxyhemoglobin Saturation with Ph, Pco2, T and Dpg
,”
Chem. Eng. Commun.
0098-6445,
47
(
1–3
), pp.
113
124
.
15.
Kelman
,
G. R.
, 1966, “
Calculation of Certain Indices of Cardio-Pulmonary Function Using a Digital Computer
,”
Respir. Physiol.
0034-5687,
1
(
3
), pp.
335
343
.
16.
Winslow
,
R. M.
,
Swenberg
,
M. L.
,
Berger
,
R. L.
,
Shrager
,
R. I.
,
Luzzana
,
M.
,
Samaja
,
M.
, and
Rossibernardi
,
L.
, 1977, “
Oxygen Equilibrium Curve of Normal Human-Blood and Its Evaluation by Adairs Equation
,”
J. Biol. Chem.
0021-9258,
252
(
7
), pp.
2331
2337
.
17.
Winslow
,
R. M.
,
Samaja
,
M.
,
Winslow
,
N. J.
,
Rossibernardi
,
L.
, and
Shrager
,
R. I.
, 1983, “
Simulation of Continuous Blood O-2 Equilibrium Curve over Physiological Ph, Dpg, and Pco2 Range
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
54
(
2
), pp.
524
529
.
18.
Caro
,
C. G.
,
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Seed
,
W. A.
, 1978,
The Mechanics of the Circulation
,
Oxford University Press
, Oxford, U.K., pp.
394
395
.
19.
Back
,
L. H.
,
Radbill
,
J. R.
, and
Crawford
,
D. W.
, 1977, “
Analysis of Oxygen-Transport From Pulsatile, Viscous Blood-Flow to Diseased Coronary-Arteries of Man
,”
J. Biomech.
0021-9290,
10
(
11–1
), pp.
763
774
.
20.
Stein
,
T. R.
,
Martin
,
J. C.
, and
Keller
,
K. H.
, 1971, “
Steady-State Oxygen Transport Through Red Blood Cell Suspensions
,”
J. Appl. Physiol.
0021-8987,
31
(
3
), pp.
397
402
.
21.
Schneiderman
,
G.
, and
Goldstick
,
T. K.
, 1978, “
Significance of Luminal Plasma-Layer Resistance in Arterial-Wall Oxygen-Supply
,”
Atherosclerosis
0021-9150,
31
(
1
), pp.
11
20
.
22.
Dash
,
R. K.
, and
Bassingthwaighte
,
J. B.
, 2004, “
Blood HbO(2) and HbCO(2) Dissociation Curves at Varied O-2, CO2, pH, 2,3-DPG and Temperature Levels
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1676
1693
.
23.
Hill
,
E. P.
,
Power
,
G. G.
, and
Longo
,
L. D.
, 1973, “
Mathematical-Model of Carbon-Dioxide Transfer in Placenta and its Interaction with Oxygen
,”
Am. J. Physiol.
0002-9513,
224
(
2
), pp.
283
299
.
24.
Hill
,
E. P.
,
Power
,
G. G.
, and
Longo
,
L. D.
, 1977, “
Kinetics of O2 and CO2 Exchange
,”
Bioengineering Aspects of the Lung
,
J. B.
West
, ed.,
Marcel Dekker
, New York, pp.
459
514
.
25.
Salathe
,
E. P.
,
Fayad
,
R.
, and
Schaffer
,
S. W.
, 1981, “
Mathematical-Analysis of Carbon-Dioxide Transport by Blood
,”
Math. Biosci.
0025-5564,
57
(
1–2
), pp.
109
153
.
26.
Williamson
,
C. H. K.
, 1985, “
Sinusoidal Flow Relative to Circular-Cylinders
,”
J. Fluid Mech.
0022-1120,
155
, pp.
141
174
.
27.
Justesen
,
P.
, 1991, “
A Numerical Study of Oscillating Flow around a Circular-Cylinder
,”
J. Fluid Mech.
0022-1120,
222
, pp.
157
196
.
28.
Badr
,
H. M.
, 1997, “
Effect of Free-Stream Fluctuations on Laminar Forced Convection from a Straight Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
15
), pp.
3653
3662
.
29.
Badr
,
H. M.
,
Dennis
,
S. C. R.
,
Kocabiyik
,
S.
, and
Nguyen
,
P.
, 1995, “
Viscous Oscillatory Flow About a Circular-Cylinder at Small to Moderate Strouhal Number
,”
J. Fluid Mech.
0022-1120,
303
, pp.
215
232
.
30.
Vaslef
,
S. N.
, 1990, “
Analysis and Design of an Intravascular Lung Assist Device
,” Ph.D. dissertation, Northwestern University, Chicago, IL.
31.
Dierickx
,
P. W. T.
,
De Somer
,
F.
,
De Wachter
,
D. S.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2000, “
Hydrodynamic characteristics of artificial lungs
,”
ASAIO J.
1058-2916,
46
(
5
), pp.
532
535
.
32.
Dierickx
,
P. W.
, de
Wachter
,
D. S.
,
De Somer
,
F.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2001, “
Mass transfer characteristics of artificial lungs
,”
ASAIO J.
1058-2916,
47
(
6
), pp.
628
633
.
33.
Cook
,
K. E.
,
Perlman
,
C. E.
,
Seipelt
,
R.
,
Backer
,
C. L.
,
Mavroudis
,
C.
, and
Mockros
,
L. F.
, 2005, “
Hemodynamic and Gas Transfer Properties of a Compliant Thoracic Artificial Lung
,”
ASAIO J.
1058-2916,
51
(
4
), pp.
404
411
.
34.
Fournier
,
R. L.
, 1998,
Basic Transport Phenomena in Biomedical Engineering
,
Taylor & Francis, Inc.
, Philadelphia, PA.
35.
Mujumdar
,
A. S.
, and
Mashelkar
,
R. A.
, 1980,
Advances in Transport Processes
,
Wiley Eastern Limited
, New Delhi, India, Vol. 1.
36.
Patankar
,
S. V.
, 1980, “
Numerical Heat Transfer and Fluid Flow
,”
Series in Computational and Physical Processes in Mechanics and Thermal Sciences
,
W. J.
Minkowycz
and
E. M.
Sparrow
, eds.,
Hemisphere Publishing Corporation
, New York, p.
197
.
37.
Demmel
,
J. W.
,
Eisenstat
,
S. C.
,
Gilbert
,
J. R.
,
Li
,
X. Y. S.
, and
Liu
,
J. W. H.
, 1999, “
A Supernodal Approach to Sparse Partial Pivoting
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
20
(
3
), pp.
720
755
.
38.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
, 1998, “
Momentum and Heat Transfer from Cylinders in Laminar Crossflow at 10(−4)<=Re<=200
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
22
), pp.
3409
3430
.
You do not currently have access to this content.