In this paper, we study the effects of initial fixed-charge density on the response behavior of pH-sensitive hydrogels subjected to coupled stimuli, namely, solution pH and externally applied electric field. This is the first instance in which a coupled stimuli numerical analysis has been carried out for these polymer gels, which are used as active sensing/actuating elements in advanced biomicroelectromechanical systems devices. In this work, a chemo-electro-mechanical formulation, termed the multi-effect-coupling pH-stimulus (MECpH) model, is first presented. This mathematical model takes into account the ionic species diffusion, electric potential coupling, and large mechanical deformation. In addition, a correlation between the diffusive hydrogen ions and fixed-charge groups on the hydrogel polymeric chains is established based on the Langmuir absorption isotherm, and incorporated accordingly into the MECpH model. To solve the resulting highly nonlinear and highly coupled partial differential equations of this mathematical model, the Hermite-Cloud method, a novel true meshless technique, is employed. To demonstrate the accuracy and robustness the MECpH model, computed numerical results are compared with experimental data available from literature. Following this validation, several numerical studies are carried out to investigate the effects of initial fixed-charge density on the volumetric variations of these pH-stimulus-responsive hydrogels when immersed in buffered solutions.

1.
Brannon-Peppas
,
L.
, and
Peppas
,
N. A.
, 1991, “
Equilibrium Swelling of pH-Sensitive Hydrogels
,”
Chem. Eng. Sci.
0009-2509,
46
, pp.
715
722
.
2.
Chu
,
Y.
,
Varanasi
,
P. P.
,
McGlade
,
M. J.
, and
Varanasib
,
S.
, 1995, “
pH-Induced Swelling Kinetics of Polyelectrolyte Hydrogels
,”
J. Appl. Polym. Sci.
0021-8995,
58
, pp.
2161
2176
.
3.
Gehrke
,
S. H.
, and
Cussler
,
E. L.
, 1988, “
Mass Transfer in pH-Sensitive Hydrogels
,”
Chem. Eng. Sci.
0009-2509,
44
, pp.
559
566
.
4.
Hamlen
,
R. P.
,
Kent
,
C. E.
, and
Shafer
,
S. N.
, 1965, “
Electrolytically Activated Contractile Polymer
,”
Nature (London)
0028-0836,
206
, pp.
1149
1150
.
5.
Ohmine
,
I.
, and
Tanaka
,
T.
, 1982, “
Salt effects on the Phase Transition of Ionic Gels
,”
J. Chem. Phys.
0021-9606,
77
, pp.
5725
5729
.
6.
Siegel
,
R. A.
, 1990, “
pH Sensitive Gels: Swelling Equilibria, Kinetics and Applications for Drug Delivery
,”
Pulse and Self-Regulated Drug Delivery
,
J.
Kost
, ed.,
CRC
,
Boca Raton
, pp.
129
155
.
7.
Suzuki
,
A.
, and
Tanaka
,
T.
, 1990, “
Phase-Transition in Polymer Gels Induced by Visible-Light
,”
Nature (London)
0028-0836,
345
, pp.
345
347
.
8.
Tanaka
,
T.
, 1978, “
Collapse of Gels and the Critical Endpoint
,”
Phys. Rev. Lett.
0031-9007,
40
, pp.
820
823
.
9.
Tanaka
,
T.
,
Fillmore
,
D.
,
Sun
,
S. T.
,
Nishio
,
I.
,
Swislow
,
G.
, and
Shah
,
A.
, 1980, “
Phase Transition in Ionic Gels
,”
Phys. Rev. Lett.
0031-9007,
45
, pp.
1636
1639
.
10.
Beebe
,
D. J.
,
Moore
,
J. S.
,
Bauer
,
J. M.
,
Yu
,
Q.
,
Liu
,
R. H.
,
Devadoss
,
C.
, and
Jo
,
B. H.
, 2000, “
Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels
,”
Nature (London)
0028-0836,
404
, pp.
588
590
.
11.
DeRossi
,
D.
,
Kajiwara
,
K.
,
Osada
,
Y.
, and
Yamauchi
,
A.
, 1991,
Polymer Gels: Fundamentals and Biomedical Applications
,
Plenum
,
New York
.
12.
Dumitriu
,
S.
, 1993,
Polymeric Biomaterials
,
Dekker
,
New York
.
13.
Grodzinsky
,
A. J.
, and
Grimshaw
,
P. E.
, 1990, “
Electrically and Chemically Controlled Hydrogels for Drug Delivery
,”
Pulse and Self-Regulated Drug Delivery
,
J.
Kost
, ed.,
CRC
,
Boca Raton
, pp.
47
64
.
14.
Shahinpoor
,
M.
, 1995, “
Micro-Electro-Mechanics of Ionic Polymeric Gels as Electrically-Controllable Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
, pp.
307
314
.
15.
Li
,
H.
,
Yuan
,
Z.
,
Ng
,
T. Y.
,
Lee
,
H. P.
,
Lam
,
K. Y.
,
Wang
,
Q. X.
,
Wu
,
S. N.
,
Fu
,
J.
, and
Hanes
,
J. J.
, 2003, “
Constitutive Model Development and Micro-structural Topology Optimisation for Nafion Hydrogel Membranes With Ionic Clustering
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
14
, pp.
1181
1196
.
16.
Wu
,
S. N.
,
Li
,
H.
,
Chen
,
J. P.
, and
Lam
,
K. Y.
, 2004, “
Modeling Investigation of Hydrogel Volume Transition
,”
Macromol. Theory Simul.
1022-1344,
13
, pp.
13
29
.
17.
Li
,
H.
,
Ng
,
T. Y.
,
Yew
,
Y. K.
, and
Lam
,
K. Y.
, 2005, “
Modeling and Simulation of the Swelling Behavior of pH-Stimulus-Responsive Hydrogels
,”
Biomacromolecules
1525-7797,
6
, pp.
109
120
.
18.
De
,
S. K.
,
Aluru
,
N. R.
,
Johnson
,
B.
,
Crone
,
W. C.
,
Beebe
,
D. J.
, and
Moore
,
J.
, 2002, “
Equilibrium Swelling and Kinetics of pH-Responsive Hydrogels: Models, Experiments and Simulations
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
544
555
.
19.
Brazel
,
C. S.
, and
Peppas
,
N. A.
, 1999, “
Dimensionless Analysis of Swelling of Hydrophilic Glassy Polymers With Subsequent Drug Release From Relaxing Structures
,”
Biomaterials
0142-9612,
20
, pp.
721
732
.
20.
Khare
,
A. R.
, and
Peppas
,
N. A.
, 1993, “
Release Behavior of Bioactive Agents From pH-Sensitive Hydrogels
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
4
, pp.
275
289
.
21.
Langer
,
R.
, 2000, “
Biomaterials: Status, Challenges and Perspectives
,”
AIChE J.
0001-1541,
46
, pp.
1286
1289
.
22.
Park
,
K.
,
Shalaby-Waleed
,
S. W.
, and
Park
,
H.
, 1993,
Biodegradable Hydrogels for Drug Delivery
,
Technomic
,
Lancaster, Pennsylvania
.
23.
Siegel
,
R. A.
, 1998, “
Drug Delivery: A Lesson From Secretory Granules
,”
Nature (London)
0028-0836,
394
, pp.
427
428
.
24.
Helfferich
,
F.
, 1962,
Ion Exchange
,
McGraw-Hill
,
New York
.
25.
Kato
,
M.
, 1995, “
Numerical Analysis of the Nernst-Planck-Poisson System
,”
J. Theor. Biol.
0022-5193,
177
, pp.
299
304
.
26.
Samson
,
E.
,
Marchand
,
J.
,
Robert
,
J. L.
, and
Bournazel
,
J. P.
, 1999, “
Modeling Ion Diffusion Mechanisms in Porous Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
2043
2060
.
27.
Bockris
,
J. O. M.
, and
Reddy-Amulya
,
K. N.
, 1998,
Modern Electrochemistry: Ionics
,
Plenum
,
New York
.
28.
Flory
,
P. J.
, 1953,
Principles of Polymer Chemistry
,
Cornell University Press
,
New York
.
29.
Malmivuo
,
J.
, and
Plonsey
,
R.
, 1995,
Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields
,
Oxford University Press
,
New York
.
30.
English
,
A. E.
,
Tanaka
,
T.
, and
Edelman
,
E. R.
, 1997, “
Equilibrium and Non-Equilibrium Phase Transitions in Copolymer Polyelectrolyte Hydrogels
,”
J. Chem. Phys.
0021-9606,
107
, pp.
1645
1654
.
31.
Grimshaw
,
P. E.
,
Nussbaum
,
J. H.
,
Grodzinsky
,
A. J.
, and
Yarmush
,
M. L.
, 1990, “
Kinetics of Electrically and Chemically Induced Swelling in Polyelectrolyte Gels
,”
J. Chem. Phys.
0021-9606,
93
, pp.
4462
4472
.
32.
Ricka
,
J.
, and
Tanaka
,
T.
, 1984, “
Swelling of Ionic Gels: Quantitative Performance of the Donnan Theory
,”
Macromolecules
0024-9297,
17
, pp.
2916
2921
.
33.
Li
,
H.
,
Ng
,
T. Y.
,
Cheng
,
J. Q.
, and
Lam
,
K. Y.
, 2003, “
Hermite-Cloud: A Novel True Meshless Method
,”
Comput. Mech.
0178-7675,
33
, pp.
30
41
.
34.
Ng
,
T. Y.
,
Li
,
H.
,
Cheng
,
J. Q.
,
Lam
,
K. Y.
, and
Yew
,
Y. K.
, 2003, “
A Novel True Meshless Numerical Technique (hM-DOR Method) for the Deformation Control of Circular Plate Integrated With Piezoelectric Sensors/Actuators
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
955
961
.
35.
Wallmersperger
,
T.
,
Kroplin
,
B.
, and
Gulch
,
R. W.
, 2001, “
Modeling and Analysis of Chemistry and Electromechanics
,”
Electroactive Polymer (EAP) Actuator as Artificial Muscles—Reality, Potential and Challenges
,
Y.
Bar-Cuhen
, ed.;
SPIE
,
Washington
, pp.
285
308
.
36.
MacGillivray
,
A. D.
, 1968, “
Nernst-Planck Equation and the Electroneutrality and Donan Equilibrium Assumptions
,”
J. Chem. Phys.
0021-9606,
48
, pp.
2903
2907
.
37.
MacGillivray
,
A. D.
, and
Hare
,
D.
, 1969, “
Applicability of Goldman's Constant Field Assumption to Biological Systems
,”
J. Theor. Biol.
0022-5193,
25
, pp.
113
126
.
38.
Biot
,
M. A.
, 1956, “
General Solutions of the Equations of Elasticity and Consolidation for a Porous Material
,”
ASME J. Appl. Mech.
0021-8936,
23
, pp.
92
96
.
39.
Budynas
,
R. G.
, 1999,
Advanced Strength and Applied Stress Analysis
,
McGraw-Hill
,
Boston
.
40.
Bergethon
,
P. R.
, 1998,
The Physical Basis of Biochemistry: The Foundations of Molecular Biophysics
,
Springer-Verlag
,
New York
,.
41.
Liu
,
G. R.
, 2002,
Mesh Free Methods: Moving Beyond the Finite Element Method
,
CRC
,
Boca Raton
.
42.
Liu
,
G. R.
, and
Gu
,
Y. T.
, 2000, “
A Meshfree Method: Meshfree Weak-Strong (MWS) Form Method for 2–D Solids
,”
Comput. Mech.
0178-7675,
33
, pp.
2
14
.
43.
Liu
,
G. R.
, and
Gu
,
Y. T.
, 2001, “
A Point Interpolation Method for Two-Dimensional Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
937
951
.
44.
Liu
,
G. R.
, and
Gu
,
Y. T.
, 2002, “
Comparisons of Two Meshfree Local Point Interpolation Methods for Structural Analyses
,”
Comput. Mech.
0178-7675,
29
, pp.
107
121
.
45.
Liu
,
W. K.
,
Jun
,
S.
, and
Zhang
,
Y. F.
, 1995, “
Reproducing Kernel Particle Methods
,”
Int. J. Numer. Methods Fluids
0271-2091,
20
, pp.
1081
1106
.
46.
Kim
,
S. J.
,
Lee
,
K. J.
,
Kim
,
S. I.
,
Lee
,
Y. M.
,
Chung
,
T. D.
, and
Lee
,
S. H.
, 2003, “
Electrochemical Behavior of an Interpenetrating Polymer Network Hydrogel Composed of Poly(Propylene Glycol) and Poly(Acrylic Acid)
,”
J. Appl. Polym. Sci.
0021-8995,
89
, pp.
2301
2305
.
47.
Kim
,
S. J.
,
Yoon
,
S. G.
,
Lee
,
S. M.
,
Lee
,
S. H.
, and
Kim
,
S. I.
, 2004, “
Electrical Sensitivity Behavior of a Hydrogel Composed of Polymethacrylic Acid/Poly(Vinyl Alcohol)
,”
J. Appl. Polym. Sci.
0021-8995,
91
, pp.
3613
3617
.
48.
Kim
,
S. Y.
,
Shin
,
H. S.
,
Lee
,
Y. M.
, and
Jeong
,
C. N.
, 1999, “
Properties of Electroresponsive Poly(Vinylalcohol)/Poly(Acrylic Acid) IPN Hydrogels Under an Electric Stimulus
,”
J. Appl. Polym. Sci.
0021-8995,
73
, pp.
1675
1683
.
49.
Fei
,
J.
,
Zhang
,
Z.
, and
Gu
,
L.
, 2002, “
Behavior of Electroresponsive Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Semi-Interpenetrating Network Hydrogel Fibers Under an Electric Stimulus
,”
Polym. Int.
0959-8103,
51
, pp.
502
509
.
50.
Johnson
,
B. D.
,
Beebe
,
D. J.
, and
Crone
,
W. C.
, 2004, “
Effects of Swelling on the Mechanical Properties of a pH-Sensitive Hydrogel for Use in Microfluidic Devices
,”
Mater. Sci. Eng., C
0928-4931,
24
, pp.
575
581
.
You do not currently have access to this content.