Mechanics of collagen gels, like that of many tissues, is governed by events occurring on a length scale much smaller than the functional scale of the material. To deal with the challenge of incorporating deterministic micromechanics into a continuous macroscopic model, we have developed an averaging-theory-based modeling framework for collagen gels. The averaging volume, which is constructed around each integration point in a macroscopic finite-element model, is assumed to experience boundary deformations homogeneous with the macroscopic deformation field, and a micromechanical problem is solved to determine the average stress at the integration point. A two-dimensional version was implemented with the microstructure modeled as a network of nonlinear springs, and 500 segments were found to be sufficient to achieve statistical homogeneity. The method was then used to simulate the experiments of Tower et al. (Ann. Biomed. Eng., 30, pp. 1221–1233) who performed uniaxial extension of prealigned collagen gels. The simulation captured many qualitative features of the experiments, including a toe region and the realignment of the fibril network during extension. Finally, the method was applied to an idealized wound model based on the characterization measurements of Bowes et al. (Wound Repair Regen., 7, pp. 179–186). The model consisted of a strongly aligned “wound” region surrounded by a less strongly aligned “healthy” region. The alignment of the fibrils in the wound region led to reduced axial strains, and the alignment of the fibrils in the healthy region, combined with the greater effective stiffness of the wound region, caused rotation of the wound region during uniaxial stretch. Although the microscopic model in this study was relatively crude, the multiscale framework is general and could be employed in conjunction with any microstructural model.

1.
Allen
,
T. D.
,
Schor
,
S. L.
, and
Schor
,
A. M.
, 1984, “
An Ultrastructural Review of Collagen Gels, a Model System for Cell-Matrix, Cell-Basement Membrane and Cell-Cell Interactions
,”
Scan Electron Microsc.
0586-5581,
1
, pp.
375
390
.
2.
Knapp
,
D. M.
,
Barocas
,
V. H.
,
Moon
,
A. G.
,
Yoo
,
K.
,
Petzold
,
L. R.
, and
Tranquillo
,
R. T.
, 1997, “
Rheology of Reconstituted Type I Collagen Gel in Confined Compression
,”
J. Rheol.
0148-6055,
41
, pp.
971
993
.
3.
Agoram
,
B.
, and
Barocas
,
V. H.
, 2001, “
Coupled Macroscopic and Microscopic Scale Modeling of Fibrillar Tissues and Tissue Equivalents
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
362
369
.
4.
Voytik-Harbin
,
S. L.
,
Roeder
,
B. A.
,
Sturgis
,
J. E.
,
Kokini
, and
K.
,
Robinson
,
J. P.
, 2003, “
Simultaneous Mechanical Loading and Confocal Reflection Microscopy for Three-Dimensional Microbiomechanical Analysis of Biomaterials and Tissue Constructs
,”
Microsc. Microanal.
1431-9276,
9
, pp.
74
85
.
5.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2004, “
Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse.
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
152
166
.
6.
Tranquillo
,
R. T.
, 1999, “
Self-Organization of Tissue-Equivalents: The Nature and Role of Contact Guidance
,”
Biochem. Soc. Symp.
0067-8694,
65
, pp.
27
42
.
7.
Tranquillo
,
R. T.
,
Durrani
,
M. A.
, and
Moon
,
A. G.
, 1992, “
Tissue Engineering Science—Consequences of Cell Traction Force
,”
Cytotechnology
0920-9069,
10
, pp.
225
250
.
8.
Elsdale
,
T.
, and
Bard
,
J.
, 1972, “
Collagen Substrata for Studies on Cell Behavior
,”
J. Cell Biol.
0021-9525,
54
, pp.
626
637
.
9.
Grinnell
,
F.
, and
Lamke
,
C. R.
, 1984, “
Reorganization of Hydrated Collagen Lattices by Human Skin Fibroblasts
,”
J. Cell. Sci.
0021-9533,
66
, pp.
51
63
.
10.
Guidry
,
C.
, and
Grinnell
,
F.
, 1986, “
Contraction of Hydrated Collagen Gels by Fibroblasts: Evidence of Two Mechanisms by Which Collagen Fibrils Are Stabilized
,”
Coll. Relat. Res.
0174-173X,
6
, pp.
515
529
.
11.
Sawhney
,
R. K.
, and
Howard
,
J.
, 2002, “
Slow Local Movements of Collagen Fibers by Fibroblasts Drive the Rapid Global Self-Organization of Collagen Gels
,”
J. Cell Biol.
0021-9525,
157
, pp.
1083
1091
.
12.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
1221
1233
.
13.
Maroudas
,
A.
,
Ziv
,
I.
,
Weisman
,
N.
, and
Venn
,
M.
, 1985, “
Studies of Hydration and Swelling Pressure in Normal and Osteoarthritic Cartilage
,”
Biorheology
0006-355X,
22
, pp.
159
169
.
14.
Harkness
,
M. L. R.
, and
Hankness
,
R. D.
, 1959, “
Effects of Enzymes on Mechanical Properties of Tissue
,”
Nature (London)
0028-0836,
183
, pp.
1821
1822
.
15.
Girton
,
T. S.
,
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
, 2002, “
Confined Compression of a Tissue-Equivalent: Collagen Fibril and Cell Alignment in Response to Anisotropic Strain
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
568
575
.
16.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
, pp.
111
123
.
17.
McCutchen
,
C. W.
, 1982, “
Cartilage is Poroelastic, Not Viscoelastic (Including an Exact Theorem About Strain Energy and Viscous Loss, and an Order of Magnitude Relation for Equilibration Time)
,”
J. Biomech.
0021-9290,
15
, pp.
325
327
.
18.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
26
, pp.
709
723
.
19.
Silver
,
F.
, 1987,
Biological Materials: Structure, Mechanical Properties and Modeling of Soft Tissues
,
New York University Press
,
New York
.
20.
Misof
,
K.
,
Rapp
,
G.
,
Fratzl
,
P.
, 1997, “
A New Molecular Model for Collagen Elasticity Based on Synchrotron X-Ray Scattering Evidence
,”
Biophys. J.
0006-3495,
72
, pp.
1376
1381
.
21.
Sokolnikoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
New York
,
McGraw-Hill
.
22.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
327
335
.
23.
Pinsky
,
P. M.
,
Datye
,
D. V.
, 1991, “
A Microstructurally-Based Finite Element Model of the Incised Human Cornea
,”
J. Biomech.
0021-9290,
24
(
10
), pp.
907
922
.
24.
Barocas
,
V. H.
,
Tranquillo
,
R. T.
, 1997, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
137
145
.
25.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
, pp.
1
12
.
26.
Lanir
,
Y.
, 1979, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
0021-9290,
12
, pp.
423
436
.
27.
Ostoja-Starzewski
,
M.
, and
Wang
,
C.
, 1989, “
Linear Elasticity of Planar Delaunay Networks: Random Field Characterization of Effective Moduli
,”
Acta Mech.
0001-5970,
80
, pp.
68
80
.
28.
Hansen
,
J. C.
,
Skalak
,
R.
,
Chien
,
S.
, and
Hoger
,
A.
, 1996, “
An Elastic Network Model Based on the Structure of the Red Blood Cell Membrane Skeleton
,”
Biophys. J.
0006-3495,
70
, pp.
146
166
.
29.
Geoffrey
,
N. M.
,
Jeffrey
,
J. F.
, and
Jason
,
H. T. B.
, 1998, “
Force Heterogeneity in a Two-Dimensional Network Model of Lung Tissue Elasticity
,”
J. Appl. Physiol.
8750-7587,
85
, pp.
1223
1229
.
30.
Edwards
,
F. S.
, 1986, “
The Theory of Macromolecular Networks
,”
Biorheology
0006-355X,
23
, pp.
589
603
.
31.
Flory
,
P. J.
, 1977, “
Theory of Elasticity of Polymers Networks. The Effect of Local Constraints on Junctions
,”
J. Chem. Phys.
0021-9606,
66
, pp.
5720
5727
.
32.
Stoneham
,
M. A.
, and
Harding
,
J. H.
, 2003, “
Not Too Big, Not Too Small: The Appropriate Scale
,”
Nat. Mater.
1476-1122,
2
, pp.
77
83
.
33.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
, pp.
1663
1673
.
34.
Breuls
,
R. G.
,
Sengers
,
B. G.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2002, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
198
207
.
35.
Agoram
,
B.
, 2000, A Macroscopic-Microscopic Model of Fibrillar Materials. Ph.D. thesis University of Colorado, Boulder, CO.
36.
Oda
,
M.
, and
Iwashita
,
K.
, 1999,
Mechanics of Granular Materials: An Introduction
,
Balkema
,
Rotterdam
.
37.
Hori
,
M.
, and
Nemat-Nasser
,
S.
, 1999, “
On Two Micromechanics Theories for Determining Micro-Macro Relations in Heterogeneous Solids
,”
Mech. Mater.
0167-6636,
31
, pp.
667
682
.
38.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
, 1994, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
0021-9290,
27
, pp.
433
444
.
39.
Drew
,
D.
, 1971, “
Averaged Field Equations for Two-Phase Media
,”
Stud. Appl. Math.
0022-2526,
50
, pp.
133
166
.
40.
Whitaker
,
S.
, 1986, “
Flow in Porous Media III: Deformable Media
,”
Transp. Porous Media
0169-3913,
1
, pp.
127
154
.
41.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
165
173
.
42.
Veis
,
A.
, 1982, “
Collagen Fibrillogenesis
,”
Connect. Tissue Res.
0300-8207,
10
, pp.
11
24
.
43.
Jain
,
M. K.
,
Chernomorsky
,
A.
,
Silver
,
F. H.
, and
Berg
,
R. A.
, 1988, “
Material Properties of Living Soft-Tissue Composites
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
22
, pp.
311
326
.
44.
Sasaki
,
N.
,
Shukunami
,
N.
,
Matsushima
,
N.
, and
Izumi
,
Y.
, 1999, “
Time-Resolved X-Ray Diffraction from Tendon Collagen During Creep Using Synchrotron Radiation
,”
J. Biomech.
0021-9290,
32
, pp.
285
292
.
45.
Silver
,
F.
, Biological Materials, 1987,
Structure, Mechanical Properties and Modeling of Soft Tissues
,
New York University Press
,
New York
.
46.
Mosler
,
E.
,
Folkhard
,
W.
,
Knorzer
,
E.
,
Nemetschek-Gansler
,
H.
,
Nemetschek
,
T.
, and
Koch
,
M. H.
, 1985, “
Stress-Induced Molecular Rearrangement in Tendon Collagen
,”
J. Mol. Biol.
0022-2836,
182
, pp.
589
596
.
47.
Sasaki
,
N.
, and
Odajima
,
S.
, 1996, “
Elongation Mechanism of Collagen Fibrils and Force-Strain Relations of Tendon at Each Level of Structural Hierarchy
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1131
1136
.
48.
Fratzl
,
P.
,
Misof
,
K.
,
Zizak
,
I.
,
Rapp
,
G.
,
Amenitsch
,
H.
, and
Bernstorff
,
S.
, 1998, “
Fibrillar Structure and Mechanical Properties of Collagen
,”
J. Struct. Biol.
1047-8477,
122
, pp.
119
122
.
49.
Wang
,
C. W.
,
Berhan
,
L.
, and
Sastry
,
A. M.
, 2000, “
Structure, Mechanics and Failure of Stochastic Fibrous Networks: Part1—Microscale Consideration
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
450
459
.
50.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2005, “
Affine Vs. Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
0148-0731, submitted.
51.
Kang
,
A. H.
, and
Gross
,
J.
, 1970, “
Relationship between the Intra and Intermolecular Cross-Links of Collagen
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
67
, pp.
1307
1314
.
52.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High in-Plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
372
380
.
53.
Collett
,
E.
, 1993,
Polarized Light: Fundamentals and Applications
,
Marcel Dekker
,
New York
.
54.
Wolman
,
M.
, and
Kasten
,
F. H.
, 1986, “
Polarized Light Microscopy in the Study of the Molecular Structure of Collagen and Reticulin
,”
Histochemistry
0301-5564,
85
, pp.
41
49
.
55.
Fuller
,
G. G.
, 1995,
Optical Rheometry of Complex Fluids
,
Oxford University Press
,
New York
.
56.
Dallon
,
J.
,
Sherratt
,
J.
,
Maini
,
P.
, and
Ferguson
,
M.
, 2000, “
Biological Implications of a Discrete Mathematical Model for Collagen Deposition and Alignment in Dermal Wound Repair
,”
IMA J. Math. Appl. Med. Biol.
0265-0746,
17
(
4
), pp.
379
393
.
57.
Bowes
,
L. E.
,
Jimenez
,
M. C.
,
Hiester
,
E. D.
,
Sacks
,
M. S.
,
Brahmatewari
,
J.
,
Mertz
,
P.
, and
Eaglstein
,
W. H.
, 1999, “
Collagen Fiber Orientation as Quantified by Small Angle Light Scattering in Wounds Treated with Transforming Growth Factor-Beta2 and Its Neutalizing Antibody
,”
Wound Repair Regen
1067-1927,
7
, pp.
179
186
.
58.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1997, “
A Triphasic Analysis of Negative Osmotic Flows through Charged Hydrated Soft Tissues
,”
J. Biomech.
0021-9290,
30
, pp.
71
78
.
59.
Roeder
,
B. A.
,
Kokini
,
K.
,
Surgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices with Varied Microstructure
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
214
223
.
You do not currently have access to this content.