Periacetabular bone metastases cause severe pain and functional disability in cancer patients. Percutaneous acetabuloplasty (PCA) is a minimally invasive, image-guided procedure whereby cement is injected into lesion sites. Pain relief and functional restoration have been observed clinically; however, neither the biomechanical consequences of the lesions nor the effectiveness of the PCA technique are well understood. The objective of this study was to investigate how periacetabular lesion size, cortex involvement, and cement modulus affect pelvic bone stresses and strains under single-legged stance loading. Experiments were performed on a male cadaver pelvis under conditions of intact, periacetabular defect, and cement-filling with surface strains recorded at three strain gage locations. The experimental data were then employed to validate three-dimensional finite element models of the same pelvis, developed using computed tomography data. The models demonstrated that increases in cortical stresses were highest along the posterior column of the acetabulum, adjacent to the defect. Cortical stresses were more profoundly affected in the presence of transcortical defects, as compared to those involving only trabecular bone. Cement filling with a modulus of 2.2GPa was shown to restore cortical stresses to near intact values, while a decrease in cement modulus due to inclusion of BaSO4 reduced the restorative effect. Peak acetabular contact pressures increased less than 15% for all simulated defect conditions; however, the contact stresses were reduced to levels below intact in the presence of either cement filling. These results suggest that periacetabular defects may increase the vulnerability of the pelvis to fracture depending on size and cortical involvement and that PCA filling may lower the risk of periacetabular fractures.

1.
Harrington
,
K. D.
, 1981, “
The Management of Acetabular Insufficiency Secondary to Metastatic Malignant Disease
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
63
(
4
), pp.
653
664
.
2.
Kitazawa
,
S.
, and
Maeda
,
S.
, 1995, “
Development of Skeletal Metastasis
,”
Clin. Orthop. Relat. Res.
0009-921X,
312
, pp.
45
50
.
3.
Mollabashy
,
A.
, and
Scarborough
,
A.
, 2000, “
The Mechanism of Metastases
,”
Orthop. Clin. North Am.
0030-5898,
31
(
4
), pp.
529
535
.
4.
Bagi
,
C. M.
, 2003, “
Skeletal Implications of Prostate Cancer
,”
J. Musculoskelet. Neuronal Interact.
,
3
(
2
), pp.
112
117
.
5.
Jacofsky
,
D. J.
,
Frassica
,
D. A.
, and
Frassica
,
F. J.
, 2004, “
Metastatic Disease to Bone
,”
Hospital Physician
,
39
, pp.
21
28
.
6.
Harrington
,
K. D.
,
Johnston
,
J. O.
,
Turner
,
R. H.
, and
Green
,
D. L.
, 1972, “
The Use of Methylmethacrylate as an Adjunction in the Internal Fixation of Malignant Neoplastic Fractures
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
54
, pp.
1665
1676
.
7.
Lackman
,
R. D.
,
Torbert
,
J. T.
,
Hosalkar
,
H. S.
,
Fox
,
E. J.
, and
Ogilvie
,
C. M.
, 2005, “
Treatment of Metastases to the Extremities and Pelvis
,”
Oper. Tech. Orthop.
1048-6666,
4
, pp.
288
295
.
8.
Harrington
,
K. D.
, 1995, “
Orthopaedic Management of Extremity and Pelvic Lesions
,”
Clin. Orthop. Relat. Res.
0009-921X,
312
, pp.
136
147
.
9.
Allan
,
D. G.
,
Bell
,
R. S.
,
Davis
,
A.
, and
Langer
,
F.
, 1995, “
Complex Acetabular Reconstruction for Metastatic Tumor
,”
J. Arthroplasty
0883-5403,
10
(
3
), pp.
301
306
.
10.
Wunder
,
J. S.
,
Ferguson
,
P. C.
,
Griffin
,
A. M.
,
Pressman
,
A.
, and
Bell
,
R. S.
, 2003, “
Acetabular Metastases: Planning for Reconstruction and Review of Results
,”
Clin. Orthop. Relat. Res.
0009-921X,
415
(Suppl.),
187
197
.
11.
Benevenia
,
J.
,
Cyran
,
F. P.
,
Biermann
,
J. S.
,
Patterson
,
F. R.
, and
Leeson
,
M. C.
, 2004, “
Treatment of Advanced Metastatic Lesions of the Acetabulum Using the Saddle Prosthesis
,”
Clin. Orthop. Relat. Res.
0009-921X,
426
, pp.
23
31
.
12.
Cotton
,
A.
,
Demondion
,
X.
,
Boutry
,
N.
,
Cortet
,
B.
,
Chastanet
,
P.
,
Duquesnoy
,
B.
, and
Leblond
,
D.
, 1999, “
Therapeutic Percutaneous Injections in the Treatment of Malignant Acetabular Osteolysis
,”
Radiographics
0271-5333,
19
, pp.
647
653
.
13.
Jacofsky
,
D. J.
,
Papagelopoulos
,
P. J.
, and
Sim
,
F. H.
, 2003, “
Advances and Challenges in the Surgical Treatment of Metastatic Bone Disease
,”
Clin. Orthop. Relat. Res.
0009-921X,
415
(Suppl.),
14
18
.
14.
Cotton
,
A.
,
Deprez
,
X.
,
Migaud
,
H.
,
Chabanne
,
B.
, and
Chastanet
,
P.
, 1995, “
Maliglant Acetabular Osteolyses: Percutaneous Injection of Acrylic Bone Cement
,”
Radiology
0033-8419,
197
(
1
), pp.
307
310
.
15.
Weill
,
A.
,
Chiras
,
J.
,
Simon
,
J. M.
,
Rose
,
M.
,
Sola-Martinez
,
T.
, and
Enkaoua
,
E.
, 1996, “
Spinal Metastases: Indications for and Results of Percutaneous Injection of Acrylic Surgical Cement
,”
Radiology
0033-8419,
199
, pp.
241
247
.
16.
Goetz
,
M. P.
,
Callstrom
,
M. R.
,
Charboneau
,
J. W.
,
Farrell
,
M. A.
,
Maus
,
T. P.
,
Welch
,
T. J.
,
Wong
,
G. Y.
,
Sloan
,
J. A.
,
Novotny
,
P. J.
,
Petersen
,
I. A.
,
Beres
,
R. A.
,
Regge
,
D.
,
Capanna
,
R.
,
Saker
,
M. B.
,
Grönemeyer
,
D. H. W.
,
Gevargez
,
A.
,
Ahrar
,
K.
,
Choti
,
M. A.
,
de Baere
,
T. J.
, and
Rubin
,
J.
, 2004, “
Percutaneous Image-Guided Radiofrequency Ablation of Painful Metastases Involving Bone: A Multicenter Study
,”
J. Clin. Oncol.
0732-183X,
22
(
2
), pp.
300
306
.
17.
Fernando
,
H. C.
,
Hoyos
,
A. D.
,
Litle
,
V.
,
Belani
,
C. P.
, and
Luketich
,
J. D.
, 2004, “
Radiofrequency Ablation: Identification of the Ideal Patient
,”
Clin. Lung Cancer
,
6
(
3
), pp.
149
153
.
18.
Callstrom
,
M. R.
, and
Charboneau
,
J. W.
, 2005, “
Percutaneous Ablation: Safe, Effective Treatment of Bone Tumors
,”
Oncology
0030-2414,
19
(
11
Suppl. 4), pp.
22
26
.
19.
Nelson
,
D. A.
,
Barker
,
M. E.
, and
Hamlin
,
B. H.
, 1997, “
Thermal Effects of Acrylic Cementation at Bone Tumor Sites
,”
Int. J. Hyperthermia
0265-6736,
13
(
3
), pp.
287
306
.
20.
Gangi
,
A.
,
Kastler
,
B. A.
, and
Dietemann
,
J. L.
, 1994, “
Percutaneous Vertebroplasty Guided by a Combination of CT and Fluoroscopy
,”
AJNR Am. J. Neuroradiol.
0195-6108,
15
(
1
), pp.
83
86
.
21.
Cotton
,
A.
,
Dewatre
,
F.
, and
Cortet
,
B.
, 1996, “
Percutaneous Vertebroplasty for Osteolytic Metastases and Myeloma
,”
Radiology
0033-8419,
200
, pp.
525
530
.
22.
Liebschner
,
M. A. K.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2001, “
Effects of Bone Cement Volume and Distribution on Vertebral Stiffness After Vertebroplasty
,”
Spine
0362-2436,
26
(
4
), pp.
1547
1554
.
23.
Tschirhart
,
C. E.
,
Roth
,
S. E.
, and
Whyne
,
C. M.
, 2005, “
Biomechanical Assessment of Stability in the Metastatic Spine Following Percutaneous Vertebroplasty: Effects of Cement Distribution Patterns and Volume
,”
J. Biomech.
0021-9290,
38
, pp.
1582
1590
.
24.
Marcy
,
P. Y.
,
Palussière
,
J.
,
Magné
,
N.
,
Ciais
,
C.
, and
Bruneton
,
J. N.
, 2000, “
Percutaneous Cementoplasty for Pelvic Bone Metastasis
,”
Support Care Cancer
0941-4355,
8
, pp.
500
503
.
25.
Weill
,
A.
,
Kobaiter
,
H.
, and
Chriras
,
J.
, 1998, “
Acetabulum Malignancies: Technique and Impact on Pain of Percutaneous Injection of Acrylic Surgical Cement
,”
Eur. Radiol.
0938-7994,
8
, pp.
123
129
.
26.
Jefferiss
,
C. D.
,
Lee
,
A. J. C.
, and
Ling
,
R. S. M.
, 1975, “
Thermal Aspects of Self Curing Polymethylmethacrylate
,”
J. Bone Joint Surg. Br.
0301-620X,
57
, pp.
57
64
.
27.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2003, “
Burst Fracture in the Metastatically Involved Spine: Development, Validation, and Parametric Analysis of a Three-Dimensional Poroelastic Finite-Element Model
,”
Spine
0362-2436,
28
(
7
), pp.
652
660
.
28.
Kosmopoulos
,
V.
, and
Keller
,
T. S.
, 2004, “
Damage-Based Finite-Element Vertebroplasty Simulations
,”
Eur. Spine J.
0940-6719,
13
, pp.
617
625
.
29.
McBroom
,
R. J.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
, 1988, “
Strength Reductions from Metastatic Cortical Bone Defect in Long Bones
,”
J. Orthop. Res.
0736-0266,
6
, pp.
369
378
.
30.
Hipp
,
J. A.
,
McBroom
,
R. J.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
, 1989, “
Structural Consequences of Endosteal Metastatic Lesions in Long bones
,”
J. Orthop. Res.
0736-0266,
7
, pp.
828
837
.
31.
Cheal
,
R. J.
,
Hipp
,
J. A.
, and
Hayes
,
W. C.
, 1993, “
Evaluation of Finite Element Analysis for Prediction of Strength Reduction Due to Metastatic Lesions in the Femoral Neck
,”
J. Biomech.
0021-9290,
26
(
3
), pp.
251
264
.
32.
Dalstra
,
M.
, and
Huiskes
,
R.
, 1995, “
Load Transfer Across the Pelvic Bone
,”
J. Biomech.
0021-9290,
28
(
6
), pp.
715
724
.
33.
Renaudin
,
F.
,
Guillemot
,
H.
,
Lavaste
,
F.
,
Skalli
,
W.
,
Lesage
,
F.
, and
Pecheux
,
C.
, 1993, “
A 3D Finite Element Model of Pelvis in Side Impact
,”
Proceedings of the 37th Stapp Car Crash Conference
, SAE Paper 933130, pp.
249
259
.
34.
Dawson
,
J. M.
,
Khmelniker
,
B. V.
, and
McAndrew
,
M. P.
, 1999, “
Analysis of the Structural Behavior of the Pelvis During Lateral Impact Using Finite Element Method
,”
Accid. Anal Prev.
0001-4575,
31
, pp.
109
119
.
35.
Bay
,
B. K.
,
Hamel
,
A. J.
,
Olson
,
S. A.
, and
Sharkey
,
N. A.
, 1997, “
Statically Equivalent Load and Support Conditions Produce Different Hip Joint Contact Pressures and Periacetabular Strains
,”
J. Biomech.
0021-9290,
30
(
2
), pp.
193
196
.
36.
Olson
,
S. A.
,
Bay
,
B. K.
,
Pollak
,
A. N.
,
Sharkey
,
N. A.
, and
Lee
,
T.
, 1996, “
The Effect of Variable Size Posterior Wall Acetabular Fractures on Contact Characteristic of the Hip Joint
,”
J. Orthop. Trauma
0890-5339,
10
(
6
), pp.
395
402
.
37.
Olson
,
S. A.
,
Bay
,
B. K.
, and
Hamel
,
A.
, 1997, “
Biomechanics of the Hip Joint and the Effects of Fracture of the Acetabulum
,”
Clin. Orthop. Relat. Res.
0009-921X,
339
, pp.
92
104
.
38.
Shepherd
,
D. E. T.
, and
Seedhom
,
B. B.
, 1999, “
Thickness of Human Articular Cartilage in Joints of the Lower Limb
,”
Ann. Rheum. Dis.
0003-4967,
58
, pp.
27
34
.
39.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
363
374
.
40.
Dalstra
,
M.
,
Huiskes
,
R.
, and
Van
,
E. L.
, 1995, “
Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
272
278
.
41.
Shepherd
,
D. E. T.
, and
Seedhom
,
B. B.
, 1999, “
The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb
,”
Rheumatology
0080-2727,
38
(
2
), pp.
124
132
.
42.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
(
11
), pp.
1019
1031
.
43.
Hibbeler
,
R. C.
, 1997,
Material of Mechanics
, 3rd ed.,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
, pp.
856
.
44.
Gupta
,
S.
,
van der Helm
,
F. C. T.
, and
van Keulen
,
F.
, 2004, “
Stress Analysis of the Cemented Glenoid Prostheses in Total Shoulder Arthroplasty
,”
J. Biomech.
0021-9290,
37
, pp.
1777
1786
.
45.
McLeish
,
R. D.
, and
Charnley
,
J.
, 1970, “
Abduction Forces in the One-Legged Stance
,”
J. Biomech.
0021-9290,
3
, pp.
191
209
.
46.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2001, “
Parametric Finite Element Analysis of Vertebral Bodies Affected by Tumors
,”
J. Biomech.
0021-9290,
34
(
10
), pp.
1317
1324
.
47.
Mizrahi
,
J.
,
Silva
,
M. J.
, and
Hayes
,
W. C.
, 1992, “
Finite Element Stress Analysis of Simulated Metastatic Lesions in the Lumbar Vertebral Body
,”
J. Biomed. Eng.
0141-5425,
14
, pp.
467
475
.
48.
Haas
,
S. S.
,
Brauer
,
G. M.
, and
Dickson
,
G.
, 1975, “
A Characterization of Polymethylmethacrylate Bone Cement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
57
, pp.
380
391
.
49.
Ginebra
,
M. P.
,
Albuixech
,
L.
,
Fernández-Barragan
,
E.
,
Aparicio
,
C.
,
Gil
,
F. J.
,
San Román
,
J.
,
Vázquez
,
B.
, and
Planell
,
J. A.
, 2002, “
Mechanical Performance of Acrylic Bone Cement Containing Different Radiopacifying Agents
,”
Biomaterials
0142-9612,
23
, pp.
1873
1882
.
50.
van Hooy-Corstijens
,
C. S. J.
,
Govaert
,
L. E.
,
Spoelstra
,
A. B.
,
Bulstra
,
S. K.
,
Wetzels
,
G. M. R.
, and
Koole
,
L. H.
, 2004, “
Mechanical Behavior of a New Acrylic Radiopaque Iodine-Containing Bone Cement
,”
Biomaterials
0142-9612,
25
, pp.
2657
2667
.
51.
Hipp
,
J. A.
,
Springfield
,
D. S.
, and
Hayes
,
W. C.
, 1995, “
Predicting Pathologic Fracture Risk in the Management of Metastatic Bone Defects
,”
Clin. Orthop. Relat. Res.
0009-921X,
312
, pp.
120
135
.
52.
Carter
,
D. R.
,
Clear
,
W. E.
,
Sprengler
,
D. M.
, and
Frankel
,
V. H.
, 1981, “
Fatigue Behavior of Adult Cortical Bone: the Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
0001-6470,
52
, pp.
481
490
.
53.
Yeh
,
O.
, and
Keaveny
,
T. M.
, 2001, “
Relative Roles of Microdamage and Microfracture in the Mechanical Behavior of Trabecular Bone
,”
J. Orthop. Res.
0736-0266,
19
, pp.
1001
1007
.
54.
Nalla
,
R. K.
,
Stölken
,
J. S.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2005, “
Fracture in Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms
,”
J. Biomech.
0021-9290,
38
, pp.
1517
1525
.
55.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
, pp.
393
405
.
56.
Courtney
,
A. C.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1996, “
Age-Related Differences in Post-Yield Damage in Human Cortical Bone, Experiment and Model
,”
J. Biomech.
0021-9290,
29
, pp.
1463
1471
.
57.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running, Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
, pp.
969
990
.
58.
Hierholzer
,
J.
,
Anselmetti
,
G.
,
Fuchs
,
H.
,
Depriester
,
C.
,
Koch
,
K.
, and
Kappert
,
D.
, 2003, “
Percutaneous Osteoplasty as a Treatment for Painful Malignant Lesions of the Pelvis and Femur
,”
J. Vasc. Interv Radiol.
1051-0443,
14
, pp.
773
777
.
59.
Ahmed
,
A. M.
,
Nair
,
R.
,
Burke
,
D. L.
, and
Miller
,
J.
, 1982, “
Transient and Residual Stresses and Displacements in Self-Curing Bone Cement—Part 2: Thermoelastic Analysis of the Stem Fixation System
,”
ASME J. Biomech. Eng.
0148-0731,
104
, pp.
28
37
.
60.
Nuño
,
N.
, and
Amabili
,
M.
, 2002, “
Modeling Debonded Stem-Cement Interface for Hip Implants: Effect of Residual Stresses
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
, pp.
41
48
.
61.
Buttermann
,
G. R.
,
Kahmann
,
R. D.
,
Lewis
,
J. L.
, and
Bradford
,
D. S.
, 1991, “
An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
4
), pp.
375
386
.
62.
Finlay
,
J. B.
,
Bournet
,
R. B.
, and
McLean
,
J.
, 1982, “
A Technique for the In Vitro Measurement of Principal Strains in the Human Tibia
,”
J. Biomech.
0021-9290,
15
(
10
), pp.
723
739
.
You do not currently have access to this content.