Background. Static deformation analysis and estimation of wall stress distribution of patient-specific cerebral aneurysms can provide useful insights into the disease process and rupture. Method of Approach. The three-dimensional geometry of saccular cerebral aneurysms from 27 patients (18 unruptured and nine ruptured) was reconstructed based on computer tomography angiography images. The aneurysm wall tissue was modeled using a nonlinear, anisotropic, hyperelastic material model (Fung-type) which was incorporated in a user subroutine in ABAQUS. Effective material fiber orientations were assumed to align with principal surface curvatures. Static deformation of the aneurysm models were simulated assuming uniform wall thickness and internal pressure load of 100mmHg. Results. The numerical analysis technique was validated by quantitative comparisons to results in the literature. For the patient-specific models, in-plane stresses in the aneurysm wall along both the stiff and weak fiber directions showed significant regional variations with the former being higher. The spatial maximum of stress ranged from as low as 0.30MPa in a small aneurysm to as high as 1.06MPa in a giant aneurysm. The patterns of distribution of stress, strain, and surface curvature were found to be similar. Sensitivity analyses showed that the computed stress is mesh independent and not very sensitive to reasonable perturbations in model parameters, and the curvature-based criteria for fiber orientations tend to minimize the total elastic strain energy in the aneurysms wall. Within this small study population, there were no statistically significant differences in the spatial means and maximums of stress and strain values between the ruptured and unruptured groups. However, the ratios between the stress components in the stiff and weak fiber directions were significantly higher in the ruptured group than those in the unruptured group. Conclusions. A methodology for nonlinear, anisotropic static deformation analysis of geometrically realistic aneurysms was developed, which can be used for a more accurate estimation of the stresses and strains than previous methods and to facilitate prospective studies on the role of stress in aneurysm rupture.

1.
Schievink
,
W. I.
, 1997, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
0028-4793,
336
(
1
), pp.
28
40
.
2.
Di Martino
,
E. S.
, and
Vorp
,
D. A.
, 2003, “
Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
31
(
7
), pp.
804
809
.
3.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
(
4
), pp.
724
732
.
4.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
5.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
, 2000, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
31
(
4
), pp.
760
769
.
6.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 1996, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
0090-6964,
24
(
5
), pp.
573
582
.
7.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
, 2005, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
25
(
8
), pp.
1558
1566
.
8.
Scott
,
S.
,
Ferguson
,
G. G.
, and
Roach
,
M. R.
, 1972, “
Comparison of the Elastic Properties of Human Intracranial Arteries and Aneurysms
,”
Can. J. Physiol. Pharmacol.
0008-4212,
50
(
4
), pp.
328
332
.
9.
Steiger
,
H. J.
,
Aaslid
,
R.
,
Keller
,
S.
, and
Reulen
,
H. J.
, 1989, “
Strength, Elasticity and Viscoelastic Properties of Cerebral Aneurysms
,”
Heart Vessels
0910-8327,
5
(
1
), pp.
41
46
.
10.
Toth
,
M.
,
Nadasy
,
G. L.
,
Nyary
,
I.
,
Kerenyi
,
T.
,
Orosz
,
M.
,
Molnarka
,
G.
, and
Monos
,
E.
, 1998, “
Sterically Inhomogenous Viscoelastic Behavior of Human Saccular Cerebral Aneurysms
,”
J. Vasc. Res.
1018-1172,
35
(
5
), pp.
345
355
.
11.
Hsu
,
F. P. K.
,
Schwab
,
C.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
, 1994, “
Identification of Response Functions From Axisymmetrical Membrane Inflation Tests—Implications for Biomechanics
,”
Int. J. Solids Struct.
0020-7683,
31
(
24
), pp.
3375
3386
.
12.
Hsu
,
F. P. K.
,
Liu
,
A. M. C.
,
Downs
,
J.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
, 1995, “
A Triplane Video-Based Experimental System for Studying Axisymmetrically Inflated Biomembranes
,”
IEEE Trans. Biomed. Eng.
0018-9294,
42
(
5
), pp.
442
450
.
13.
Kyriacou
,
S. K.
,
Shah
,
A. D.
, and
Humphrey
,
J. D.
, 1997, “
Inverse Finite Element Characterization of Nonlinear Hyperelastic Membranes
,”
ASME J. Appl. Mech.
0021-8936,
64
(
2
), pp.
257
262
.
14.
Seshaiyer
,
P.
,
Hsu
,
F. P. K.
,
Shah
,
A. D.
,
Kyriacou
,
S. K.
, and
Humphrey
,
J. D.
, 2001, “
Multiaxial Mechanical Behavior of Human Saccular Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
281
289
.
15.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2003, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
363
371
.
16.
Akkas
,
N.
, 1990, “
Aneurysms as a Biomechanical Instability Problem
,”
Biomechanical Transport Processes
,
F.
Mosora
, ed.,
Plenum
, New York.
17.
Simkins
,
T. E.
, and
Stehbens
,
W. E.
, 1974, “
Vibrations Recorded From the Adventitial Surface of Experimental Aneurysms and Arteriovenous Fistulas
,”
Vasc. Surg.
0042-2835,
8
(
3
), pp.
153
165
.
18.
Canham
,
P. B.
, and
Ferguson
,
G. G.
, 1985, “
A Mathematical Model for the Mechanics of Saccular Aneurysms
,”
Neuroepidemiology
0251-5350,
17
(
2
), pp.
291
295
.
19.
Hademenos
,
G. J.
,
Massoud
,
T.
,
Valentino
,
D. J.
,
Duckwiler
,
G.
, and
Vinuela
,
F.
, 1994, “
A Nonlinear Mathematical Model for the Development and Rupture of Intracranial Saccular Aneurysms
,”
Neurol. Res.
0160-6412,
16
(
5
), pp.
376
384
.
20.
Kyriacou
,
S. K.
,
Schwab
,
C.
, and
Humphrey
,
J. D.
, 1996, “
Finite Element Analysis of Nonlinear Orthotropic Hyperelastic Membranes
,”
Comput. Mech.
0178-7675,
18
(
4
), pp.
269
278
.
21.
Shah
,
A. D.
,
Harris
,
J. L.
,
Kyriacou
,
S. K.
, and
Humphrey
,
J. D.
, 1998, “
Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
(
2
), pp.
109
121
.
22.
David
,
G.
, and
Humphrey
,
J. D.
, 2003, “
Further Evidence for the Dynamic Stability of Intracranial Saccular Aneurysms
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1143
1150
.
23.
Shah
,
A. D.
, and
Humphrey
,
J. D.
, 1999, “
Finite Strain Elastodynamics of Intracranial Saccular Aneurysms
,”
J. Biomech.
0021-9290,
32
(
6
), pp.
593
599
.
24.
Osborne
,
W. A.
, 1909, “
The Elasticity of Rubber Balloons and Hollow Viscera
,”
Proc. R. Soc., London, Ser. B
0950-1193,
81
, pp.
485
499
.
25.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
, 2004, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
32
(
2
), pp.
264
273
.
26.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
, 1991, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
0009-7330,
69
(
1
), pp.
116
122
.
27.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
, New York.
28.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
, 2005, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
0022-3085,
102
(
2
), pp.
355
362
.
29.
Ryan
,
J. M.
, and
Humphrey
,
J. D.
, 1999, “
Finite Element Based Predictions of Preferred Material Symmetries in Saccular Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
27
(
5
), pp.
641
647
.
30.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
1
48
.
31.
Wilber
,
J. P.
, and
Walton
,
J. R.
, 2002, “
The Convexity Properties of a Class of Constitutive Models for Biological Soft Issues
,”
Math. Mech. Solids
1081-2865,
7
(
3
), pp.
217
235
.
32.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Dixon
,
J. G.
, and
Ferguson
,
S. E.
, 1991, “
Layered Collagen Fabric of Cerebral Aneurysms Quantitatively Assessed by the Universal Stage and Polarized Light Microscopy
,”
Anat. Rec.
0003-276X,
231
(
4
), pp.
579
592
.
33.
Canham
,
P. B.
,
Finlay
,
H. M.
, and
Tong
,
S. Y.
, 1996, “
Stereological Analysis of the Layered Collagen of Human Intracranial Aneurysms
,”
J. Microsc.
0022-2720,
183(Pt 2)
, pp.
170
180
.
34.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Kiernan
,
J. A.
, and
Ferguson
,
G. G.
, 1999, “
Layered Structure of Saccular Aneurysms Assessed by Collagen Birefringence
,”
Neurol. Res.
0160-6412,
21
(
7
), pp.
618
626
.
35.
MacDonald
,
D. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2000, “
Directional Wall Strength in Saccular Brain Aneurysms from Polarized Light Microscopy
,”
Ann. Biomed. Eng.
0090-6964,
28
(
5
), pp.
533
542
.
36.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2001, “
On the Potentially Protective Role of Contact Constraints on Saccular Aneurysms
,”
J. Biomech.
0021-9290,
34
, pp.
607
612
.
37.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
, 2005, “
Effect of Variable Wall Thickness on Stresses in Cerebral Aneurysms
,” BMES 2005 Annual Fall Meeting, Baltimore, MD, September 29–October 1, 2005, Abstract.
You do not currently have access to this content.