To assess the performance of femoral orthopedic implants, they are often attached to cadaveric femurs, and biomechanical testing is performed. To identify areas of high stress, stress shielding, and to facilitate implant redesign, these tests are often accompanied by finite element (FE) models of the bone/implant system. However, cadaveric bone suffers from wide specimen to specimen variability both in terms of bone geometry and mechanical properties, making it virtually impossible for experimental results to be reproduced. An alternative approach is to utilize synthetic femurs of standardized geometry, having material behavior approximating that of human bone, but with very small specimen to specimen variability. This approach allows for repeatable experimental results and a standard geometry for use in accompanying FE models. While the synthetic bones appear to be of appropriate geometry to simulate bone mechanical behavior, it has not, however, been established what bone quality they most resemble, i.e., osteoporotic or osteopenic versus healthy bone. Furthermore, it is also of interest to determine whether FE models of synthetic bones, with appropriate adjustments in input material properties or geometric size, could be used to simulate the mechanical behavior of a wider range of bone quality and size. To shed light on these questions, the axial and torsional stiffness of cadaveric femurs were compared to those measured on synthetic femurs. A FE model, previously validated by the authors to represent the geometry of a synthetic femur, was then used with a range of input material properties and change in geometric size, to establish whether cadaveric results could be simulated. Axial and torsional stiffnesses and rigidities were measured for 25 human cadaveric femurs (simulating poor bone stock) and three synthetic “third generation composite” femurs (3GCF) (simulating normal healthy bone stock) in the midstance orientation. The measured results were compared, under identical loading conditions, to those predicted by a previously validated three-dimensional finite element model of the 3GCF at a variety of Young’s modulus values. A smaller FE model of the 3GCF was also created to examine the effects of a simple change in bone size. The 3GCF was found to be significantly stiffer (2.3 times in torsional loading, 1.7 times in axial loading) than the presently utilized cadaveric samples. Nevertheless, the FE model was able to successfully simulate both the behavior of the 3GCF, and a wide range of cadaveric bone data scatter by an appropriate adjustment of Young’s modulus or geometric size. The synthetic femur had a significantly higher stiffness than the cadaveric bone samples. The finite element model provided a good estimate of upper and lower bounds for the axial and torsional stiffness of human femurs because it was effective at reproducing the geometric properties of a femur. Cadaveric bone experiments can be used to calibrate FE models’ input material properties so that bones of varying quality can be simulated.

1.
Brekelmans
,
W. A. M.
,
Poort
,
H. W.
, and
Sloof
,
T. J. J. H.
, 1972, “
A New Method to Analyse the Mechanical Behaviour of Skeletal Parts
,”
Acta Orthop. Scand.
0001-6470,
43
, pp.
301
317
.
2.
Valliapan
,
S.
,
Svensson
,
N. L.
, and
Wood
,
R. D.
, 1977, “
Three Dimensional Stress Analysis of the Human Femur
,”
Comput. Biol. Med.
0010-4825,
7
, pp.
253
264
.
3.
Cheal
,
E. J.
,
Hayes
,
W. C.
,
White
,
A. A.
, III
, and
Perren
,
S. M.
, 1983, “
Stress Analysis of a Simplified Compression Plate Fixation System for Fractured Bones
,”
Comput. Struct.
0045-7949,
17
, pp.
845
855
.
4.
Cheal
,
E. J.
,
Hayes
,
W. C.
,
White
,
A. A.
, III
, and
Perren
,
S. M.
, 1984, “
Three-Dimensional Finite Element Analysis of a Simplified Compression Plate Fixation System
,”
J. Biomech. Eng.
0148-0731,
106
, pp.
295
301
.
5.
Cheal
,
E. J.
,
Hayes
,
W. C.
,
White
,
A. A.
, III
, and
Perren
,
S. M.
, 1985, “
Stress Analysis of Compression Plate Fixation and its Effects on Long Bone Remodeling
,”
J. Biomech.
0021-9290,
18
(
2
), pp.
141
150
.
6.
Huiskes
,
R.
, 1982, “
On the Modeling of Long Bones in Structural Analyses
,”
J. Biomech.
0021-9290,
15
(
1
), pp.
65
69
.
7.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
93
108
.
8.
Cheal
,
E. J.
,
Spector
,
M.
, and
Hayes
,
W. C.
, 1992, “
Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty
,”
J. Orthop. Res.
0736-0266,
10
, pp.
405
422
.
9.
Wang
,
C. J.
,
Yettram
,
A. L.
,
Yao
,
M. S.
, and
Proctor
,
P.
, 1998, “
Finite Element Analysis of a Gamma Nail Within a Fractured Femur
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
677
683
.
10.
Wang
,
C. J.
,
Brown
,
C. J.
,
Yettram
,
A. L.
, and
Proctor
,
P.
, 2000, “
Intramedullary Femoral Nails: One or Two Lag Screws? A Preliminary Study
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
613
624
.
11.
McNamara
,
B. P.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Taylor
,
D.
, 1997, “
Relationship Between Bone-Prosthesis Bonding and Load Transfer in Total Hip Reconstruction
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
621
630
.
12.
Taylor
,
M. E.
,
Tanner
,
K. E.
,
Freeman
,
M. A. R.
, and
Yettram
,
A. L.
, 1996, “
Stress and Strain Distribution Within the Intact Femur: Compression or Bending?
Med. Eng. Phys.
1350-4533,
18
(
2
), pp.
122
131
.
13.
van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
O.
, 1995, “
A New Method to Determine the Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
0021-9290,
28
(
1
), pp.
69
81
.
14.
Cordey
,
J.
,
Borgeaud
,
M.
,
Frankle
,
M.
,
Harder
,
Y.
, and
Martinet
,
O.
, 1999, “
Loading Model for the Human Femur Taking the Tension Band Effect of the Ilio-Tibial Tract Into Account
,”
Injury Int. J. Care Injured
,
30
(
1
), pp.
A26
A30
.
15.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
35
.
16.
Martens
,
M.
,
Van Audekercke
,
R.
,
De Meester
,
P.
, and
Mulier
,
J. C.
, 1986, “
Mechanical Behaviour of Femoral Bones in Bending Loading
,”
J. Biomech.
0021-9290,
19
(
6
), pp.
443
454
.
17.
Martens
,
M.
,
Van Audekercke
,
R.
,
De Meester
,
P.
, and
Mulier
,
J. C.
, 1980, “
The Mechanical Characteristics of the Long Bones of the Lower Extremity in Torsional Loading
,”
J. Biomech.
0021-9290,
13
, pp.
667
676
.
18.
McConnell
,
A.
,
Syed
,
K.
,
Zdero
,
R.
,
Peskun
,
C.
, and
Schemitsch
,
E.
, 2004, “
A Biomechanical Assessment of Fixation Constructs for Ipsilateral Intertrochanteric and Femoral Shaft Fractures
,” under review.
19.
Messerer
,
O.
, 1880,
Uber Elasticitat und Festigkeit der Menschlichen Knochen
,
JG Gottaschen
,
Stuttgart, Germany
.
20.
Knese
,
K. H.
,
Hahne
,
O.
, and
Biermann
,
H.
, 1956, “
Festigkeituntersuchungen an Menschlichen Extremitatenknochen. Gegenbaur
,”
Morph. Jahib.
,
96
, pp.
141
209
.
21.
Motoshima
,
T.
, 1960, “
Studies on the Strength for Bending of Human Body Extremity Bones
,”
J. Kyoto Pref. Univ. Med.
,
68
, pp.
1377
1397
.
22.
Mather
,
B. S.
, 1968, “
Variation With Age and Sex in Strength of the Femur
,”
Med. Biol. Eng.
0025-696X,
6
, pp.
129
132
.
23.
Ehler
,
E.
, and
Losche
,
H.
, 1970, “
Biegeversuch an Menschlichen Femur
,”
Beitr Orthop. Traumatol.
0005-8149,
17
, pp.
304
314
.
24.
Asang
,
E.
,
Posch
,
P.
, and
Engelbrecht
,
R.
, 1969, “
Experimentelle Untersuchungen über die Bruchfestigkeit des menschlichen Schienbeines
,”
Mschr. Unf.-Helik.
,
72
, pp.
336
344
.
25.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2003, “
Structural Properties of an Improved Re-Design of Composite Replicate Femurs and Tibias
,”
Transactions 29th Society for Biomaterials
, Vol.
26
,
Reno, NV
, April 30–May 3, p.
702
.
26.
Cusick
,
R. P.
,
Lucas
,
G. L.
,
McQueen
,
D. A.
, and
Graber
,
C. D.
, 2000, “
Construct Stiffness of Different Fixation Methods for Supracondylar Femoral Fractures Above Total Knee Prostheses
,”
Am. J. Orthop.
1078-4519,
29
(
9
), pp.
695
699
.
27.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
, 2000, “
Fixation of Periprosthetic Femoral Fracture Shaft Fractures Occurring at the Tip of the Stem: A Biomechanical Study of 5 Techniques
,”
J. Arthroplasty
0883-5403,
15
(
4
), pp.
523
528
.
28.
Peindl
,
R. D.
,
Zura
,
R. D.
,
Vincent
,
A.
,
Coley
,
E. R.
,
Bosse
,
M. J.
, and
Sims
,
S. H.
, 2004, “
Unstable Proximal Extraarticular Tibia Fractures: A Biomechanical Evaluation of Four Methods of Fixation
,”
J. Orthop. Trauma
0890-5339,
18
(
8
), pp.
540
545
.
29.
Stevens
,
S. S.
,
Irish
,
A. J.
,
Vachtsevanos
,
J. G.
,
Csongradi
,
J.
, and
Beaupre
,
G. S.
, 1995, “
A Biomechanical Study of Three Wiring Techniques for Cerclage-Plating
,”
J. Orthop. Trauma
0890-5339,
9
(
5
), pp.
381
387
.
30.
Zdero
,
R.
,
Walker
,
R.
,
Waddell
,
J. P.
, and
Schemitsch
,
E. H.
, 2005, “
The Biomechanics of Periprosthetic Mid-Shaft Femoral Fractures Following THA: A Comparison of Locked Plates, Non-Locked Plates, and Allograft Struts
,”
J. Orthop. Trauma
, submitted.
31.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 2000, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
0021-9290,
33
(
3
), pp.
279
288
.
32.
Heiner
,
A. D.
, and
Brown
,
T. D.
, 2001, “
Structural Properties of a New Design of Composite Replicate Femurs and Tibias
,”
J. Biomech.
0021-9290,
34
, pp.
773
781
.
33.
Tencer
,
A. F.
,
Johnson
,
K. D.
,
Johnston
,
D. W. C.
, and
Gill
,
K. A.
, 1984, “
Biomechanical Comparison of Various Methods of Stabilization of Subtrochanteric Fractures of the Femur
,”
J. Orthop. Res.
0736-0266,
2
, pp.
297
305
.
34.
Hsu
,
R. W.
,
Himeno
,
S.
,
Coventry
,
M. B.
, and
Chao
,
E. Y.
, 1990, “
Normal Axial Alignment of the Lower Extremity and Load-Bearing Distribution at the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
255
, pp.
215
227
.
35.
Paul
,
J. P.
, 1976, “
Approaches to Design: Force Actions Transmitted by Joints in the Human Body
,”
Proc. R. Soc. London, Ser. B
0962-8452,
192
, pp.
163
172
.
36.
Johnston
,
R. C.
, and
Smidt
,
G. L.
, 1974, “
Measurement of Hip-Joint Motion During Walking
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
51
(
6
), pp.
1083
1094
.
37.
Kaufer
,
H.
,
Matthews
,
L. S.
, and
Sonstegard
,
D.
, 1974, “
Stable Fixation of Intertrochanteric Fractures
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
5
), pp.
899
907
.
38.
Koval
,
K. J.
,
Kummer
,
F. J.
,
Bharam
,
S.
,
Chen
,
D.
, and
Halder
,
S.
, 1996, “
Distal Femoral Fixation: A Laboratory Comparison of the 95Degree Plate, Antegrade and Retrograde Inserted Reamed Intramedullary Nails
,”
J. Orthop. Trauma
0890-5339,
10
(
6
), pp.
378
382
.
39.
David
,
S. M.
,
Harrow
,
M. E.
,
Peindl
,
R. D.
,
Frick
,
S. L.
, and
Kellam
,
J. F.
, 1997, “
Comparative Biomechanical Analysis of Supracondylar Femur Fracture Fixation: Locked Intramedullary Nail Versus 95-Degree Angled Plate
,”
J. Orthop. Trauma
0890-5339,
11
(
5
), pp.
344
350
.
40.
Dennis
,
M. G.
,
Simon
,
J. A.
,
Kummer
,
F. J.
,
Koval
,
K. J.
, and
Di Cesare
,
P. E.
, 2001, “
Fixation of Periprosthetic Femoral Shaft Fractures: A Biomechanical Comparison of Two Techniques
,”
J. Orthop. Trauma
0890-5339,
15
(
3
), pp.
177
180
.
41.
Stankewich
,
C. J.
,
Chapman
,
J.
,
Muthusamy
,
R.
,
Quaid
,
G.
,
Schemitsch
,
E.
,
Tencer
,
A. F.
, and
Ching
,
R. P.
, 1996, “
Relationship of Mechanical Factors to the Strength of Proximal Femur Fractures Fixed With Cancellous Screws
,”
J. Orthop. Trauma
0890-5339,
10
(
4
), pp.
248
257
.
42.
Pacific Research Laboratories, 2004, “
Sawbones Product Catalogue
,” www.sawbones.comwww.sawbones.com, p.
73
.
43.
Papini
,
M.
, and
Zalzal
,
P.
, “
Thirdgen.zip, From the Biomechanics European Laboratory (BEL), Finite Element Mesh Repository
,” http://www.tecno.ior.it/VRLAB/researchers/repository/BEL_repository.htmlhttp://www.tecno.ior.it/VRLAB/researchers/repository/BEL_repository.html
44.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A.
, 1998, “
A Comparitive Study on Different Methods of Automatic Mesh Generation on Human Femurs
,”
Med. Eng. Phys.
1350-4533,
20
(
1
), pp.
1
10
.
45.
Tencer
,
A. F.
, and
Johnson
,
K. D.
, 1984,
Biomechanics in Orthopedic Trauma: Bone Facture and Fixation
,
JB Lippincott Company
,
PA
, p.
31
.
46.
Schaffler
,
M. B.
,
Radin
,
E. L.
, and
Burr
,
D. B.
, 1989, “
Mechanical and Morphological Effects of Strain Rate on Fatigue of Compact Bone
,”
Bone (N.Y.)
8756-3282,
10
, pp.
207
214
.
47.
Courtney
,
A. C.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1996, “
Age-Related Differences in Post-Yield Damage in Human Cortical Bone: Experiment and Model
,”
J. Biomech.
0021-9290,
29
(
11
), pp.
1463
1471
.
48.
Martin
,
R. B.
, 1991, “
Determinants of the Mechanical Properties of Bones
,”
J. Biomech.
0021-9290,
24
, pp.
79
88
.
49.
Currey
,
J. D.
, 1988, “
The Effect of Porosity and Mineral Content on the Young’s Modulus of Elasticity of Compact Bone
,”
J. Biomech.
0021-9290,
21
(
2
), pp.
131
139
.
50.
Ruff
,
C. B.
, and
Hayes
,
W. C.
, 1988, “
Sex Differences in Age-Related Remodeling of the Femur and Tibia
,”
J. Orthop. Res.
0736-0266,
6
(
6
), pp.
886
96
.
51.
Feik
,
S. A.
,
Thomas
,
C. D. L.
, and
Clement
,
J. G.
, 1997, “
Age Related Changes in Cortical Porosity of the Midshaft of the Human Femur
,”
J. Anat.
0021-8782,
191
, pp.
407
416
.
52.
Beck
,
T. J.
,
Ruff
,
C. B.
, and
Bissessur
,
K.
, 1993, “
Age-Related Changes in Female Femoral Neck Geometry: Implications for Bone Strength
,”
Calcif. Tissue Int.
0171-967X,
53
(
1
), pp.
41
46
.
You do not currently have access to this content.