Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior–posterior displacements and internal–external rotations were produced by the model with 20mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for 20mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors’ knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio–femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.

1.
Hilding
,
M.
,
Asplund
,
S.
,
Bäckbro
,
B.
, and
Ryd
,
L.
, 1993, “
Alignment Accuracy by Two Different Instrumentation Systems in Total Knee Arthroplasty
,”
Am. J. Knee Surg.
0899-7403,
6
, pp.
150
158
.
2.
Liau
,
J. J.
,
Cheng
,
C. K.
,
Huang
,
C. H.
, and
Lo
,
W. H.
, 2002, “
The Effect of Malalignment on Stresses in Polyethylene Component of Total Knee Prostheses—A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
17
, pp.
140
146
.
3.
Bargren
,
J.
,
Blaha
,
J.
, and
Freeman
,
M.
, 1983, “
Alignment in Total Knee Arthroplasty. Correlated Biomechanical and Clinical Observations
,”
Clin. Orthop. Relat. Res.
0009-921X,
173
, pp.
178
183
.
4.
Hsu
,
H. P.
,
Garg
,
A.
,
Walker
,
P. S.
,
Spector
,
M.
, and
Ewald
,
F. C.
, 1989, “
Effect of Knee Component Alignment on Tibial Load Distribution With Clinical Correlation
,”
Clin. Orthop. Relat. Res.
0009-921X,
248
, pp.
135
144
.
5.
Lotke
,
P.
, and
Ecker
,
M.
, 1977, “
Influence of Positioning of Prosthesis in Total Knee Replacement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
59
(
1
), pp.
77
79
.
6.
Ritter
,
M.
,
Herbst
,
S.
,
Keating
,
E.
, and
Faris
,
P.
, 1994, “
Radiolucency at the Bone-Cement Interface in Total Knee Replacement. The Effects of Bone-Surface Preparation and Cement Technique
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
1
), pp.
60
65
.
7.
Jeffery
,
R.
,
Morris
,
R.
, and
Denham
,
R.
, 1991, “
Coronal Alignment After Total Knee Replacement
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
73
(
5
), pp.
709
714
.
8.
Tew
,
M.
, and
Waugh
,
W.
, 1985, “
Tibiofemoral Alignment and the Results of Knee Replacement
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
67
(
4
), pp.
551
556
.
9.
Lewallen
,
D.
,
Bryan
,
R.
, and
Peterson
,
L.
, 1984, “
Polycentric Total Knee Arthroplasty. A Ten-Year Follow-up Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
66
(
8
), pp.
1211
1218
.
10.
Coull
,
R.
,
Bankes
,
M. J. K.
, and
Rossouw
,
D. J.
, 1999, “
Evaluation of Tibial Component Angles in 79 Consecutive Total Knee Arthroplasties
,”
The Knee
0968-0160,
6
, pp.
235
237
.
11.
Albrektsson
,
B. E.
,
Ryd
,
L.
,
Carlsson
,
L. V.
,
Freeman
,
M. A.
,
Herberts
,
P.
,
Regner
,
L.
, and
Selvik
,
G.
, 1990, “
The Effect of a Stem on the Tibial Component of Knee Arthroplasty. A Roentgen Stereophotogrammetric Study of Uncemented Tibial Components in the Freeman–Samuelson Knee Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
72
, pp.
252
258
.
12.
Albrektsson
,
B. E.
,
Carlsson
,
L. V.
,
Freeman
,
M. A.
,
Herberts
,
P.
, and
Ryd
,
L.
, 1992, “
Proximally Cemented Versus Uncemented Freeman-Samuelson Knee Arthroplasty. A Prospective Randomised Study
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
74
, pp.
233
238
.
13.
Carlsson
,
L. V.
,
Albrektsson
,
B. E.
,
Freeman
,
M. A.
,
Herberts
,
P.
,
Malchau
,
H.
, and
Ryd
,
L.
, 1993, “
A New Radiographic Method for Detection of Tibial Component Migration in Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
8
, pp.
117
123
.
14.
Nelissen
,
R. G.
,
Valstar
,
E. R.
, and
Rozing
,
P. M.
, 1998, “
The Effect of Hydroxyapatite on the Micromotion of Total Knee Prostheses. A Prospective, Randomized, Double-Blind Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
80
, pp.
1665
1672
.
15.
Önsten
,
I.
,
Nordqvist
,
A.
,
Carlsson
,
A. S.
,
Besjakov
,
J.
, and
Shott
,
S.
, 1998, “
Hydroxyapatite Augmentation of the Porous Coating Improves Fixation of Tibial Components. A Randomised RSA Study in 116 Patients
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
80
, pp.
417
425
.
16.
Ryd
,
L.
,
Albrektsson
,
B. E.
,
Carlsson
,
L.
,
Dansgard
,
F.
,
Herberts
,
P.
,
Lindstrand
,
A.
,
Regner
,
L.
, and
Toksvig-Larsen
,
S.
, 1995, “
Roentgen Stereophotogrammetric Analysis as a Predictor of Mechanical Loosening of Knee Prostheses
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77
, pp.
377
383
.
17.
Grewal
,
R.
,
Rimmer
,
M. G.
, and
Freeman
,
M. A.
, 1992, “
Early Migration of Prostheses Related to Long-Term Survivorship. Comparison of Tibial Components in Knee Replacement
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
74
, pp.
239
242
.
18.
Fukuoka
,
S.
,
Yoshida
,
K.
, and
Yamano
,
Y.
, 2000, “
Estimation of the Migration of Tibial Components in Total Knee Arthroplasty
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
82
, pp.
222
227
.
19.
Taylor
,
M.
, and
Tanner
,
K. E.
, 1997, “
Fatigue Failure of Cancellous Bone: A Possible Cause of Implant Migration and Loosening
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
79
, pp.
181
182
.
20.
Murase
,
K.
,
Crowninshield
,
R. D.
,
Pedersen
,
D. R.
, and
Chang
,
T. S.
, 1983, “
An Analysis of Tibial Component Design in Total Knee Arthroplasty
,”
J. Biomech.
0021-9290,
16
, pp.
13
22
.
21.
Beaupre
,
G. S.
,
Vasu
,
R.
,
Carter
,
D. R.
, and
Schurman
,
D. J.
, 1986, “
Epiphyseal-Based Designs for Tibial Plateau Components—II. Stress Analysis in the Sagittal Plane
,”
J. Biomech.
0021-9290,
19
, pp.
663
673
.
22.
Vasu
,
R.
,
Carter
,
D. R.
,
Schurman
,
D. J.
, and
Beaupre
,
G. S.
, 1986, “
Epiphyseal-Based Designs for Tibial Plateau Components—I. Stress Analysis in the Frontal Plane
,”
J. Biomech.
0021-9290,
19
, pp.
647
662
.
23.
Rakotomanana
,
R. L.
,
Leyvraz
,
P. F.
,
Curnier
,
A.
,
Heegaard
,
J. H.
, and
Rubin
,
P. J.
, 1992, “
A Finite Element Model for Evaluation of Tibial Prosthesis-Bone Interface in Total Knee Replacement
,”
J. Biomech.
0021-9290,
25
, pp.
1413
1424
.
24.
Lewis
,
J. L.
,
Askew
,
M. J.
, and
Jaycox
,
D. P.
, 1982, “
A Comparative Evaluation of Tibial Component Designs of Total Knee Prostheses
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
, pp.
129
135
.
25.
Bartel
,
D. L.
,
Burstein
,
A. H.
,
Santavicca
,
E. A.
, and
Insall
,
J. N.
, 1982, “
Performance of the Tibial Component in Total Knee Replacement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
, pp.
1026
1033
.
26.
Perillo-Marcone
,
A.
,
Barrett
,
D. S.
, and
Taylor
,
M.
, 2000, “
The Importance of Tibial Alignment: Finite Element Analysis of Tibial Malalignment
,”
J. Arthroplasty
0883-5403,
15
, pp.
1020
1027
.
27.
Taylor
,
M.
,
Tanner
,
K.
, and
Freeman
,
M.
, 1998, “
Finite Element Analysis of the Implanted Proximal Tibia: A Relationship Between the Initial Cancellous Bone Stresses and Implant Migration
,”
J. Biomech.
0021-9290,
31
, pp.
303
310
.
28.
Perillo-Marcone
,
A.
,
Ryd
,
L.
,
Johnsson
,
K.
, and
Taylor
,
M.
, 2004, “
A Combined RSA and FE Study of the Implanted Proximal Tibia: Correlation of the Post-Operative Mechanical Environment With Implant Migration
,”
J. Biomech.
0021-9290,
37
, pp.
1205
1213
.
29.
Perillo-Marcone
,
A.
, 2001, “
Finite Element Analysis of the Proximal Implanted Tibia in Relation to Implant Loosening
,” Ph.D. thesis, University of Southampton, Southampton, UK.
30.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
31.
Taylor
,
M.
, and
Barrett
,
D. S.
, 2003, “
Explicit Finite Element Simulation of Eccentric Loading in Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
0009-921X,
414
, pp.
162
171
.
32.
Zannoni
,
C.
,
Mantovani
,
R.
, and
Viceconti
,
M.
, 1998, “
Material Properties Assignment to Finite Element Models of Bone Structures: A New Method
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
735
740
.
33.
Snyder
,
S. M.
, and
Schneider
,
E.
, 1991, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
0736-0266,
9
, pp.
422
431
.
34.
Ashman
,
R. B.
,
Rho
,
J. Y.
, and
Turner
,
C. H.
, 1989, “
Anatomical Variation of Orthotropic Elastic Moduli of the Proximal Human Tibia
,”
J. Biomech.
0021-9290,
22
, pp.
895
900
.
35.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
The Compressive Behavior of Bone as a Two-Phase Porous Structure
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
59
, pp.
954
962
.
36.
Linde
,
F.
,
Pongsoipetch
,
B.
,
Frich
,
L. H.
, and
Hvid
,
I.
, 1990, “
Three-Axial Strain Controlled Testing Applied to Bone Specimens From the Proximal Tibial Epiphysis
,”
J. Biomech.
0021-9290,
23
, pp.
1167
1172
.
37.
Linde
,
F.
,
Norgaard
,
P.
,
Hvid
,
I.
,
Odgaard
,
A.
, and
Soballe
,
K.
, 1991, “
Mechanical Properties of Trabecular Bone. Dependency on Strain Rate
,”
J. Biomech.
0021-9290,
24
, pp.
803
809
.
38.
Perillo-Marcone
,
A.
,
Alonso-Vazquez
,
A.
, and
Taylor
,
M.
, 2003, “
Assessment of the Effect of Mesh Density on the Material Property Discretisation Within QCT Based FE Models: A Practical Example Using the Implanted Proximal Tibia
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
, pp.
17
26
.
39.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
, 1998, “
Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
276
290
.
40.
Blankevoort
,
L.
, and
Huiskes
,
R.
, 1991, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
J. Biomech. Eng.
0148-0731,
113
, pp.
263
269
.
41.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
, 1991, “
Recruitment of Knee Joint Ligaments
,”
J. Biomech. Eng.
0148-0731,
113
, pp.
94
103
.
42.
Behrens
,
J. C.
,
Walker
,
P. S.
, and
Shoji
,
H.
, 1974, “
Variations in Strength and Structure of Cancellous Bone at the Knee
,”
J. Biomech.
0021-9290,
7
, pp.
201
207
.
43.
Lindahl
,
O.
, 1976, “
Mechanical Properties of Dried Defatted Spongy Bone
,”
Acta Orthop. Scand.
0001-6470,
47
, pp.
11
19
.
44.
Williams
,
J. L.
, and
Lewis
,
J. L.
, 1982, “
Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibial Epiphysis
,”
J. Biomech. Eng.
0148-0731,
104
, pp.
50
56
.
45.
Hvid
,
I.
, and
Hansen
,
S. L.
, 1985, “
Trabecular Bone Strength Patterns at the Proximal Tibial Epiphysis
,”
J. Orthop. Res.
0736-0266,
3
, pp.
464
472
.
46.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
, 2001, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
307
333
.
47.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
, 1999, “
A Cellular Solid Criterion for Predicting the Axial-Shear Failure Properties of Bovine Trabecular Bone
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
414
422
.
48.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
, 2001, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
0021-9290,
34
, pp.
569
577
.
49.
Turner
,
C. H.
, 1995, “
Is Yield Strain in Cancellous Bone Isotropic?
,”
J. Biomech.
0021-9290,
28
, pp.
763
765
.
50.
Chang
,
W. C.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
, 1999, “
Uniaxial Yield Strains for Bovine Trabecular Bone are Isotropic and Asymmetric
,”
J. Orthop. Res.
0736-0266,
17
, pp.
582
585
.
51.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
, 1997, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
0021-9290,
30
, pp.
83
89
.
52.
Tan
,
K.
, and
Taylor
,
M.
, 2003, “
Influence of Simulating the Collateral Ligaments When Modelling a Total Knee Replacement
,”
Proceedings International Congress on Computational Bioengineering
, Zaragoza, Spain, September 24–26, pp.
670
675
.
53.
Tan
,
K.
, 2004, “
Assessing the Performance Envelope of Total Knee Replacements—An Explicit Finite Element Study
,” Ph.D. thesis, University of Southampton, Southampton, UK.
54.
Røhl
,
L.
,
Larsen
,
E.
,
Linde
,
F.
,
Odgaard
,
A.
, and
Jørgensen
,
J.
, 1991, “
Tensile and Compressive Properties of Cancellous Bone
,”
J. Biomech.
0021-9290,
24
, pp.
1143
1149
.
You do not currently have access to this content.