Lengthening of an anterior cruciate ligament (ACL) graft construct can occur as a result of lengthening at the sites of tibial and/or femoral fixation and manifests as an increase in anterior laxity. Although lengthening at the site of fixation has been measured for a variety of fixation devices, it is difficult to place these results in a clinical context because the mathematical relationship between lengthening of an ACL graft construct and anterior laxity is unknown. The purpose of our study was to determine empirically this relationship. Ten cadaveric knees were reconstructed with a double-looped tendon graft. With the knee in 25° of flexion, the position of the proximal end of the graft inside the femoral tunnel was adjusted by moving the femoral fixation device until the anterior laxity at an applied anterior force of 134N matched that of the intact knee. In random order, the graft construct was lengthened 1, 2, 3, 4, and 5mm by moving the femoral fixation device distally along the femoral tunnel and anterior laxity was measured. The increase in the length of the graft construct was related to the increase in anterior laxity by a simple linear regression model. Lengthening the graft construct from 1 to 5mm caused an equal increase in anterior laxity (slope=1.0mmmm, r2=0.800, p<0.0001). Because an anterior laxity increase of 3mm or greater in a reconstructed knee is considered unstable clinically and because many fixation devices in widespread use clinically allow 3mm or greater of lengthening in in vitro tests, our empirical relationship indicates that lengthening at the site of fixation probably is an important cause of knee instability following ACL reconstructive surgery. Our empirical relation also indicates that an important criterion in the design of future fixation devices is that lengthening at the sites of fixation in in vitro tests should be limited to less than 3mm.

1.
Cuppone
,
M.
, and
Seedhom
,
B. B.
, 2001, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
0949-2658,
6
, pp.
253
261
.
2.
Giurea
,
M.
,
Zorilla
,
P.
,
Amis
,
A. A.
, and
Aichroth
,
P.
, 1999, “
Comparative Pull-out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
27
, pp.
621
625
.
3.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 1999, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
0363-5465,
27
, pp.
35
43
.
4.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
Lengthening of Double-Looped Tendon Graft Constructs in Three Regions After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Sci.
0949-2658,
22
, pp.
839
846
.
5.
Haut Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
162
169
.
6.
Boorman
,
R. S.
,
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2002, “
Ligament Grafts Become More Susceptible to Creep Within Days After Surgery: Evidence for Early Enzymatic Degradation of a Ligament Graft in a Rabbit Model
,”
Acta Orthop. Scand.
0001-6470,
73
, pp.
568
574
.
7.
Coleridge
,
S. D.
, and
Amis
,
A. A.
, 2004, “
A Comparison of Five Tibial-Fixation Systems in Hamstring-Graft Anterior Cruciate Ligament Reconstruction
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
, pp.
391
397
.
8.
Ahmad
,
C. S.
,
Gardner
,
T. R.
,
Groh
,
M.
,
Arnouk
,
J.
, and
Levine
,
W. N.
, 2004, “
Mechanical Properties of Soft Tissue Femoral Fixation Devices for Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
635
640
.
9.
Kousa
,
P.
,
Jarvinen
,
T. L. N.
,
Vihavainen
,
M.
,
Kannus
,
P.
, and
Jarvinen
,
M.
, 2003, “
The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part II: Tibial Site
,”
Am. J. Sports Med.
0363-5465,
31
, pp.
182
188
.
10.
Kousa
,
P.
,
Jarvinen
,
T. L. N.
,
Vihavainen
,
M.
,
Kannus
,
P.
, and
Jarvinen
,
M.
, 2003, “
The Fixation Strength of Six Hamstring Tendon Graft Fixation Devices in Anterior Cruciate Ligament Reconstruction—Part I: Femoral Site
,”
Am. J. Sports Med.
0363-5465,
31
, pp.
174
181
.
11.
Grover
,
D. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2005, “
Early Tension Loss in an Anterior Cruciate Ligament Graft. A Cadaver Study of Four Tibial Fixation Devices
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87-A
, pp.
381
390
.
12.
Grover
,
D. M.
, 2004, “
There is an Early Tension Loss in a Tendon ACL Graft That Increases the Maximal Anterior Translation: A Cadaveric Study of Four Tibial Fixation Devices
,” MS thesis, Biomedical Engineering, University of California, Davis, CA.
13.
Melby
,
A.
, III
,
Noble
,
J. S.
,
Askew
,
M. J.
,
Boom
,
A. A.
, and
Hurst
,
F. W.
, 1991, “
The Effects of Graft Tensioning on the Laxity and Kinematics of the Anterior Cruciate Ligament Reconstructed Knee
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
7
, pp.
257
266
.
14.
Bailey
,
S. B.
,
Grover
,
D. M.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2004, “
Foam-Reinforced Elderly Human Tibia Approximates Young Human Tibia Better Than Porcine Tibia—A Study of the Structural Properties of Three Soft Tissue Fixation Devices
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
755
764
.
15.
Simmons
,
R.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 2003, “
Effect of the Angle of the Femoral and Tibial Tunnels in the Coronal Plane and Incremental Excision of the Posterior Cruciate Ligament on Tension of an Anterior Cruciate Ligament Graft: An in Vitro Study
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
, pp.
1018
1029
.
16.
Morrison
,
J. B.
, 1969, “
Function of the Knee Joint in Various Activities
,”
Biomed. Eng.
0006-2898,
4
, pp.
573
580
.
17.
Nurmi
,
J. T.
,
Sievanen
,
H.
,
Kannus
,
P.
,
Jarvinen
,
M.
, and
Jarvinen
,
T. L. N.
, 2004, “
Porcine Tibia is a Poor Substitute for Human Cadaver Tibia for Evaluating Interference Screw Fixation
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
765
771
.
18.
Tomita
,
F.
,
Yasuda
,
K.
,
Mikami
,
S.
,
Sakai
,
T.
,
Yamazaki
,
S.
, and
Tohyama
,
H.
, 2001, “
Comparisons of Intraosseous Graft Healing Between the Doubled Flexor Tendon Graft and the Bone-Patellar Tendon-Bone Graft in Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
17
, pp.
461
476
.
19.
Kyung
,
H. S.
,
Kim
,
S. Y.
,
Oh
,
C. W.
, and
Kim
,
S. J.
, 2003, “
Tendon-to-Bone Tunnel Healing in a Rabbit Model: The Effect of Periosteum Augmentation at the Tendon-to-Bone Interface
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
, pp.
9
15
.
20.
Grassman
,
S. R.
,
McDonald
,
D. B.
,
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2002, “
Early Healing Processes of Free Tendon Grafts Within Bone Tunnels is Bone-Specific: A Morphological Study in a Rabbit Model
,”
The Knee
0968-0160,
9
, pp.
21
26
.
21.
Hoffmann
,
R. F.
,
Peine
,
R.
,
Bail
,
H. J.
,
Sudkamp
,
N. P.
, and
Weiler
,
A.
, 1999, “
Initial Fixation Strength of Modified Patellar Tendon Grafts for Anatomic Fixation in Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
15
, pp.
392
399
.
22.
Weiler
,
A.
,
Hoffmann
,
R. F.
,
Siepe
,
C. J.
,
Kolbeck
,
S. F.
, and
Sudkamp
,
N. P.
, 2000, “
The Influence of Screw Geometry on Hamstring Tendon Interference Fit Fixation
,”
Am. J. Sports Med.
0363-5465,
28
, pp.
356
359
.
23.
Weiler
,
A.
,
Hoffmann
,
R. F.
,
Stahelin
,
A. C.
,
Bail
,
H. J.
,
Siepe
,
C. J.
, and
Sudkamp
,
N. P.
, 1998, “
Hamstring Tendon Fixation Using Interference Screws: A Biomechanical Study in Calf Tibial Bone
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
14
, pp.
29
37
.
24.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
62
69
.
25.
Howell
,
S. M.
, and
Taylor
,
M. A.
, 1996, “
Brace-Free Rehabilitation With Early Return to Activity for Knees Reconstructed With a Double-Looped Semitendinosus and Gracilis Graft
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
, pp.
814
825
.
26.
Howell
,
S. M.
, and
Deutsch
,
M. L.
, 1999, “
Comparison of Endoscopic and Two-Incision Techniques for Reconstructing a Torn Anterior Cruciate Ligament Using Hamstring Tendons
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
15
, pp.
594
606
.
27.
O’Neill
,
D. B.
, 1996, “
Arthroscopically Assisted Reconstruction of the Anterior Cruciate Ligament. A Prospective Randomized Analysis of Three Techniques
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
, pp.
803
813
.
28.
Yasuda
,
K.
,
Ohkoshi
,
Y.
,
Tanabe
,
Y.
, and
Kaneda
,
K.
, 1992, “
Quantitative Evaluation of Knee Instability and Muscle Strength After Anterior Cruciate Ligament Reconstruction Using Patellar and Quadriceps Tendon
,”
Am. J. Sports Med.
0363-5465,
20
, pp.
471
475
.
29.
Eagar
,
P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
How the Fixation Method Stiffness and Initial Tension Affect Anterior Load-Displacement of the Knee and Tension in Anterior Cruciate Ligament Grafts: A Study in Cadaveric Knees Using a Double-Loop Hamstrings Graft
,”
J. Orthop. Res.
0736-0266,
22
, pp.
613
624
.
30.
Ahmed
,
A. M.
,
Hyder
,
A.
,
Burke
,
D. L.
, and
Chan
,
K. H.
, 1987, “
In-Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading
,”
J. Orthop. Res.
0736-0266,
5
, pp.
217
230
.
31.
Markolf
,
K. L.
,
Bargar
,
W. L.
,
Shoemaker
,
S. C.
, and
Amstutz
,
H. C.
, 1981, “
The Role of Joint Load in Knee Stability
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
63
, pp.
570
585
.
32.
Markolf
,
K. L.
,
Burchfield
,
D. M.
,
Shapiro
,
M. M.
,
Davis
,
B. R.
,
Finerman
,
G. A.
, and
Slauterbeck
,
J. L.
, 1996, “
Biomechanical Consequences of Replacement of the Anterior Cruciate Ligament With a Patellar Ligament Allograft. Part I: Insertion of the Graft and Anterior-Posterior Testing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
78
, pp.
1720
1727
.
33.
Hame
,
S. L.
,
Oakes
,
D. A.
, and
Markolf
,
K. L.
, 2002, “
Injury to the Anterior Cruciate Ligament During Alpine Skiing: A Biomechanical Analysis of Tibial Torque and Knee Flexion Angle
,”
Am. J. Sports Med.
0363-5465,
30
, pp.
537
540
.
You do not currently have access to this content.