To study the effects of intraventricular flow dynamics on the aortic flow, we created an integrated model of the left ventricle and aorta and conducted a computer simulation of diastolic and systolic blood flow within this model. The results demonstrated that the velocity profile at the aortic annulus changed dynamically, and was influenced by the intraventricular flow dynamics. The profile was almost flat in early systole but became nonuniform as systole progressed, and was skewed toward the posterior side in midsystole and toward the anterior side in later systole. At a distance from the aortic annulus, a different velocity profile was induced by the twisting and torsion of the aorta. In the ascending aorta, the fastest flow was initially located in the posteromedial sector, and it moved to the posterior section along the circumference as systole progressed. The nonuniformity of the aortic inflow gave rise to a complex wall shear stress (WSS) distribution in the aorta. A comparison of the WSS distribution obtained in this integrated analysis with that obtained in flow calculations using an isolated aorta model with Poiseuille and flat inlet conditions showed that intraventricular flow affected the WSS distribution in the ascending aorta. These results address the importance of an integrated analysis of flow in the left ventricle and aorta.

1.
DeBakey
,
M. E.
,
Lawrie
,
G. M.
, and
Glaeser
,
D. H.
, 1985, “
Patterns of Atherosclerosis and Their Surgical Significance
,”
Ann. Surg.
0003-4932,
201
(
2
), pp.
115
131
.
2.
Yoshii
,
S.
,
Mohri
,
N.
,
Kamiya
,
K.
, and
Tada
,
Y.
, 1996, “
Cine Magnetic Resonance Imaging Study of Blood Flow and Wall Motion of the Aortic Arch
,”
Jpn. Circ. J.
0047-1828,
60
, pp.
553
559
(in Japanese).
3.
Fujioka
,
H.
, and
Tanishita
,
K.
, 2000, “
Computational Fluid Mechanics of the Blood Flow in an Aortic Vessel with Realistic Geometry
,”
Clinical Application of Computational Mechanics to the Cardiovascular System
,
T.
Yamaguchi
ed.,
Springer
,
Tokyo
, pp.
99
117
.
4.
Shahcheraghi
,
N.
,
Dwyer
,
H. A.
,
Cheer
,
A. Y.
,
Barakat
,
A. I.
, and
Rutaganira
,
T.
, 2002, “
Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
378
387
.
5.
Mori
,
D.
, and
Yamaguchi
,
T.
, 2003, “
Computational Fluid Dynamics Analysis of the Blood Flow in the Thoracic Aorta on the Development of Aneurysm
,”
J. Jpn. Coll. Angiol.
,
43
, pp.
94
97
.
6.
Rossvoll
,
O.
,
Samstad
,
S.
,
Torp
,
H. G.
,
Linker
,
D. T.
,
Skjaerpe
,
T.
,
Angelsen
,
B. A.
, and
Hatle
,
L.
, 1991, “
The Velocity Distribution in the Aortic Anulus in Normal Subjects: A Quantitative Analysis of Two-Dimensional Doppler Flow Maps
,”
J. Am. Soc. Echocardiogr
0894-7317,
4
(
4
), pp.
367
378
.
7.
Zhou
,
Y. Q.
,
Faerestrand
,
S.
,
Matre
,
K.
, and
Birkeland
,
S.
, 1993, “
Velocity Distributions in the Left Ventricular Outflow Tract and the Aortic Annulus Measured with Doppler Colour Flow Mapping in Normal Subjects
,”
Eur. Heart J.
0195-668X,
14
(
9
), pp.
1179
1188
.
8.
Haugen
,
B. O.
,
Berg
,
S.
,
Brecke
,
K. M.
,
Torp
,
H.
,
Slordahl
,
S. A.
,
Skaerpe
,
T.
, and
Samstad
,
S. O.
, 2002, “
Blood Flow Velocity Profiles in the Aortic Annulus: a 3-Dimensional Freehand Color Flow Doppler Imaging Study
,”
J. Am. Soc. Echocardiogr
0894-7317,
15
(
4
), pp.
328
333
.
9.
Liu
,
H.
, 2000, “
A Computational Fluid Dynamic Study of the Helical Flow in Aorta
,” in
Abstract Book of ICTAM 2000
, Chicago, p.
185
.
10.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
, 2003, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
347
354
.
11.
Nakamura
,
M.
,
Wada
,
S.
,
Mikami
,
T.
,
Kitabatake
,
A.
, and
Karino
,
T.
, 2003, “
Computational Study on the Evolution of a Vortical Flow in a Human Left Ventricle during Early Diastole
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
59
72
.
12.
Yoshii
,
S.
,
Kamiya
,
K.
,
Matsukawa
,
T.
, and
Ueno
,
A.
, 1988, “
3D Analysis of the Aortic Arch Aneurysm: Importance of the Transverse Arch Curve from the Horizontal View
,”
Nippon Geka Gakkai Zasshi
0301-4894,
89
(
6
), p.
972
(in Japanese).
13.
Honma
,
H.
,
Oobayashi
,
K.
, and
Ueda
,
K.
, 1998, “
Echographic Anatomy for Echocardiograms
,”
Guide to Echocardiography
,
Japan Medical Association
, eds.,
Nakayama, Tokyo, Japan
, pp.
3
16
.
14.
Nakamura
,
M.
,
Wada
,
S.
,
Mikami
,
T.
,
Kitabatake
,
A.
, and
Karino
,
T.
, 2002, “
A Computational Fluid Mechanical Study on the Effects of Opening and Closing of the Mitral Orifice on a Transmitral Flow Velocity Profile and an Early Diastolic Intraventricular Flow
,”
JSME Int. J., Ser. C
1340-8062,
45
, pp.
913
922
.
15.
Saber
,
N. R.
,
Wood
,
N. B.
,
Gosman
,
A. D.
,
Merrifield
,
R. D.
,
Yang
,
G. Z.
,
Charrier
,
C. L.
,
Gatehouse
,
P. D.
, and
Firmin
,
D. N.
, 2003, “
Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart via Combination of Magnetic Resonance Imaging with Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
(
1
), pp.
42
52
.
16.
Barbee
,
K. A.
,
Mundel
,
T.
,
Lal
,
R.
, and
Davies
,
P. F.
, 1995, “
Subcellular Distribution of Shear Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers
,”
Am. J. Physiol.
0002-9513,
268
(
4
),
H1765
1772
.
17.
Satcher
,
R. L.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Dewey
,
C. F.
, Jr.
, 1992, “
The Distribution of Fluid Forces on Model Arterial Endothelium using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
309
316
.
18.
Yamaguchi
,
T.
,
Yamamoto
,
Y.
, and
Liu
,
H.
, 2000, “
Computational Mechanical Model Studies on the Spontaneous Emergent Morphogenesis of the Cultured Endothelial Cells
,”
J. Biomech.
0021-9290,
33
, pp.
115
126
.
19.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
, 1995, “
Flow Patterns in Three-Dimensional Left Ventricular Systolic and Diastolic Flows Determined from Computational Fluid Dynamics
,”
Biorheology
0006-355X,
32
(
1
), pp.
61
71
.
20.
McQueen
,
D. M.
, and
Peskin
,
C. S.
, 2000, “
Heart Simulation by an Immersed Boundry Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity
,”
Mechanics for a New Millennium
,
H.
Aref
and
J. W.
Philips
, eds.,
Kluwer Academic
,
Dordrechet, The Netherlands
, pp.
429
444
.
21.
Beppu
,
S.
,
Izumi
,
S.
,
Miyatake
,
K.
,
Nagata
,
S.
,
Park
,
Y. D.
,
Sakakibara
,
H.
, and
Nimura
,
Y.
, 1988, “
Abnormal Blood Pathways in Left Ventricular Cavity in Acute Myocardial Infarction. Experimental Observations with Special Reference to Regional Wall Motion Abnormality and Hemostasis
,”
Circulation
0009-7322,
78
(
1
), pp.
157
164
.
22.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Wilkes
,
A. J.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Yacoub
,
M. H.
, 2000, “
Asymmetric Redirection of Flow through the Heart
,”
Nature (London)
0028-0836,
404
(
6779
), pp.
759
761
.
23.
Ebbers
,
T.
,
Wigstrom
,
L.
,
Bolger
,
A. F.
,
Wranne
,
B.
, and
Karlsson
,
M.
, 2002, “
Noninvasive Measurement of Time-Varying Three-Dimensional Relative Pressure Fields within the Human Heart
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
3
), pp.
288
293
.
24.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
, 1993, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
0009-7322,
88
(
5
), pp.
2235
2247
.
25.
Mori
,
D.
, 2003, “
Computational Fluid Dynamics of the Blood Flow in the Aortic Arch with respect to the Pathogenesis of the Aortic Aneurysm
,” PhD. thesis, Tohoku University, Sendai, Japan.
26.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
(
3
), pp.
293
302
.
27.
Kleinstreuer
,
C.
,
Hyun
,
S.
,
Buchanan
,
J. R.
, Jr.
,
Longest
,
P. W.
,
Archie
,
J. P.
, Jr.
, and
Truskey
,
G. A.
, 2001, “
Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels
,”
Crit. Rev. Biomed. Eng.
0278-940X,
29
(
1
), pp.
1
64
.
28.
Nakamura
,
M.
,
Wada
,
S.
,
Karino
,
T.
, and
Yamaguchi
,
T.
, 2005, “
Effects of a Ventricular Untwisting on Intraventricular Diastolic Flow and Color M-Mode Doppler Echocardiograms
,”
Technol. Health Care
0928-7329,
13
, pp.
269
280
.
29.
De Hart
,
J.
,
Peters
,
G. W.
,
Schreurs
,
P. J.
, and
Baaijens
,
F. P.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
0021-9290,
36
(
1
), pp.
103
112
.
30.
De Hart
,
J.
,
Baaijens
,
F. P.
,
Peters
,
G. W.
, and
Schreurs
,
P. J.
, 2003, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
0021-9290,
36
(
5
), pp.
699
712
.
31.
Farthing
,
S.
, and
Peronneau
,
P.
, 1979, “
Flow in the Thoracic Aorta
,”
Cardiovasc. Res.
0008-6363,
13
(
11
), pp.
607
620
.
32.
Channdran
,
K. B.
, 1993, “
Flow Dynamics in the Human Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
611
616
.
You do not currently have access to this content.