The study of ventricular mechanics—analyzing the distribution of strain and stress in myocardium throughout the cardiac cycle—is crucially dependent on the accuracy of the constitutive law chosen to represent the highly nonlinear and anisotropic properties of passive cardiac muscle. A number of such laws have been proposed and fitted to experimental measurements of stress-strain behavior. Here we examine five of these laws and compare them on the basis of (i) “goodness of fit:” How well they fit a set of six shear deformation tests, (ii) “determinability:” How well determined the objective function is at the optimal parameter fit, and (iii) “variability:” How well determined the material parameters are over the range of experiments. These criteria are utilized to discuss the advantages and disadvantages of the constitutive laws.

1.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldmann
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Models
,”
J. Biomech. Eng.
0148-0731
113
, pp.
42
55
.
2.
LeGrice
,
I. J.
,
Smaill
,
B. H.
,
Chai
,
L. Z.
,
Edgar
,
S. G.
,
Gavin
,
J. B.
, and
Hunter
,
P. J.
, 1995, “
Laminar Structure of the Heart: Ventricular Myocyte Arrangement and Connective Tissue Architecture in the Dog
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
269
, pp.
H571
H582
.
3.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
McCulloch
,
A. D.
, 2001, “
Modelling Cardiac Mechanical Properties in Three Dimensions
,”
Philos. Trans. R. Soc. London
0962-8428,
359
(
1783
), pp.
1233
1250
.
4.
Fung
,
Y. C.
, 1965,
Foundations of Solid Mechanics
,
Prentice-Hall
, Inc., Englewood Cliffs, New Jersey.
5.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
, New York,
2nd ed
.
6.
Nash
,
M. P.
, and
Hunter
,
P. J.
, 2000, “
Computational Mechanics of the Heart
,”
J. Elast.
0374-3535,
61
, pp.
113
141
.
7.
Smaill
,
B.
, and
Hunter
,
P.
, “
Theory of Heart
,”
Structure and Function of the Diastolic Heart: Material Properties of Passive Myocardium
,
Springer-Verlag
, Berlin, Chap. 1, pp.
1
29
.
8.
Burnham
,
K. P.
, and
Anderson
,
D. R.
,
Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach
,
Springer
, New York,
2nd ed
.
9.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Imanuel
,
O.
, 1996, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
41
47
.
10.
Itskov
,
M.
, and
Aksel
,
N.
, 2004, “
A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3833
3848
.
11.
Leonov
,
A. I.
, 2000, “
On the Conditions of Potentiality in Finite Elasticity and Hypo-elasticity
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
2565
2576
.
12.
Lainé
,
E.
,
Vallée
,
C.
, and
Fortune
,
D.
, 1999, “
Nonlinear Isotropic Constitutive Laws: Choice of the Three Invariants, Complex Potentials and Constitutive Inequalities
,”
Int. J. Eng. Sci.
0020-7225,
37
, pp.
1927
1941
.
13.
Arts
,
T.
,
Costa
,
K. D.
,
Covell
,
J. W.
, and
McCulloch
,
A. D.
, 2001, “
Relating Myocardial Laminar Architecture to Shear Strain and Muscle Fiber Orientation
,
Am. J. Physiol.
0002-9513,
280
, pp.
H2222
H2229
.
14.
Legrice
,
I. J.
,
Takayama
,
Y.
, and
Covell
,
J. W.
, 1995, “
Transverse Shear Along Myocardial Cleavage Planes Provides a Mechanism for Normal Systolic Wall Thickening
,”
Circ. Res.
0009-7330,
77
, pp.
182
193
.
15.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A.
, and
LeGrice
,
I. J.
, 2002, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
283
, pp.
H2650
H2659
.
16.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics
,
Wiley
, Chichester.
17.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
,
Longman Group Ltd.
, New York.
18.
Bischoff
,
J. E.
,
Arruda
,
E. A.
, and
Grosh
,
K.
, 2002, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
570
579
.
19.
Cohen
,
A.
, 1991, “
A Padé Approximant to the Inverse Langevin Function
,”
Rheol. Acta
0035-4511,
30
, pp.
270
273
.
20.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
Numerical Recipes
,
Cambridge University Press
, Cambridge, MA.
21.
Schmid
,
H.
,
Nash
,
M. P.
,
Young
,
A. A.
,
Röhrle
,
O.
, and
Hunter
,
P. J.
, 2005, “
A Computationally Efficient Optimization Kernel for Material Parameter Estimation Procedures
,”
J. Biomech. Eng.
(to be published).
22.
Nelles
,
O.
, 2001,
Nonlinear System Identification
,
Springer-Verlag
, Berlin.
23.
Levenberg
,
K.
, 1944, “
A Method for Certain Nonlinear Problems in Least Squares
,”
Q. Appl. Math.
0033-569X,
2
, pp.
164
168
.
24.
Akaike
,
H.
, 1973, “
Information Theory as an Extension of the Maximum Likelihood Principle
,” in Second International Symposium on Information Theory,
B. N.
Petrov
and
F.
Csaki
, eds., pp.
267
281
.
25.
Akaike
,
H.
, 1974, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
0018-9286,
19
, pp.
716
723
.
26.
Akaike
,
H.
, 1977, “
On Entropy Maximization Principle
,” in
Applications of Statistics
,
P. R.
Krishnaiah
, ed.,
North-Holland
, Amsterdam, The Netherlands, Vol.
19
, pp.
27
41
.
27.
Nathanson
,
M. H.
, and
Saidel
,
G. M.
, 1985, “
Multiple-objective Criteria for Optimal Experimental Design: Application to Ferrokinetics
,”
Am. J. Physiol.
0002-9513,
17
, pp.
R378
R386
.
28.
Bard
,
Y.
, 1974,
Nonlinear Parameter Estimation
,
Academic Press
, New York and London.
29.
Criscione
,
J. C.
, 2003, “
Rivlins Representation Formula is ill-Conceived for the Determination of Response Functions via Biaxial Testing
,”
J. Elast.
0374-3535,
70
, pp.
129
147
.
This content is only available via PDF.
You do not currently have access to this content.