The determination of biomechanical force systems of implanted femurs to obtain adequate strain measurements has been neglected in many published studies. Due to geometric alterations induced by surgery and those inherent to the design of the prosthesis, the loading system changes because the lever arms are modified. This paper discusses the determination of adequate loading of the implanted femur based on the intact femur-loading configuration. Four reconstructions with Lubinus SPII, Charnley Roundback, Müller Straight and Stanmore prostheses were used in the study. Pseudophysiologic and nonphysiologic implanted system forces were generated and assessed with finite element analysis. Using an equilibrium system of forces composed by the Fx (medially direction) component of the hip contact force and the bending moments Mx (median plane) and My (coronal plane) allowed adequate, pseudo-physiological loading of the implanted femur. We suggest that at least the bending moment at the coronal plane must be restored in the implanted femur-loading configuration.

1.
Prendergast
,
P. J.
, 1997, “
Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
6
), pp.
343
366
.
2.
Huikes
,
R.
, 1995, “
The Law of Adaptive Bone Remodelling: A Case for Crying Newton?
Bone Structure and Remodelling
,
A.
Odgaaard
, and
H.
Weinans
, eds.,
World Scientific
, Singapore, p.
15
.
3.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
, 1996, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone
,”
J. Biomech.
0021-9290,
29
, pp.
1653
1657
.
4.
Fung
,
Y. C.
, 1983, “
On the Foundations of Biomechanics
,”
J. Appl. Phys.
0021-8979,
50
, pp.
1003
1009
.
5.
Cristofolini
,
L.
, and
Viceconti
,
M.
, 1999, “
In-Vitro Stress Shielding Measurements Can be Affected by Large Errors
,”
J. Arthroplasty
0883-5403,
14
(
2
), pp.
215
219
.
6.
Ramos
,
A.
, and
Simões
,
J. A.
, 2003, “
HYPERMESH® Finite Element Model of the Proximal Femur: Some Considerations
,” presented at the
International Congress on Computational Bioengineering
, Zaragoza, Spain, September 24–26.
7.
Berelmans
,
W. A. M.
,
Poort
,
H. W.
, and
Slooff
,
T. J.
, 1972, “
A New Method to Analyse the Mechanical Behaviour of Skeletal Parts
,”
Acta Orthop. Scand.
0001-6470,
43
, pp.
301
317
.
8.
Taylor
,
M.
,
Tanner
,
K. E.
,
Freeman
,
M. A.
, and
Yettram
,
A. L.
, 1995, “
Stress and Strain Distribution Within the Intact Femur: Compression or Bending?
,”
Med. Eng. Phys.
1350-4533,
18
, pp.
122
131
.
9.
Polgar
,
K.
,
Viceconti
,
M.
, and
O’Connor
,
J. J.
, 2001, “
A Comparison Between Automatically Generated Linear and Parabolic Tetrahedral When Used to Mesh a Human Femur
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215H
, pp.
85
94
.
10.
Prendergast
,
P. J.
, and
Maher
,
S. A.
, 2001, “
Issues in Pre-Clinical Testing of Implants
,”
J. Mater. Process. Technol.
0924-0136,
118
, pp.
337
342
.
11.
Viceconti
,
M.
,
Bellingeri
,
L.
,
Cristofolini
,
L.
, and
Toni
,
A.
, 1998, “
A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
1
10
.
12.
Merz
,
B.
,
Lengsfeld
,
M.
,
Müller
,
M. R.
,
Kaminsky
,
J.
,
Rüegsegger
,
P.
, and
Niederer
,
P.
, 1996, “
Automated Generation of 3D Fe-Models of the Human Femur—Comparison of Methods and Results
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
J.
Middleton
,
M. L.
Jones
, and
G. N.
Pande
, eds.,
Gordon and Breach Science Publishers
, Amsterdam, p.
125
.
13.
Keyak
,
J. H.
, and
Skinner
,
H. B.
, 1992, “
Three-Dimensional Finite Element Modelling of Bone: Effects of Element Size
,”
J. Biomed. Eng.
0141-5425,
14
, pp.
483
489
.
14.
Ladd
,
A. I. C.
, and
Kinney
,
J. H.
, 1998, “
Numerical Errors and Uncertainties in Finite-Element Modelling of Trabecular Bone
,”
J. Biomech.
0021-9290,
31
, pp.
941
945
.
15.
Vander Sloten
,
J.
, and
Van Der Perre
,
G.
, 1993, “
The Influence of Geometrical Distortions of Three-Dimensional Finite Elements, Used to Model Proximal Femoral Bone
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
209
, pp.
31
36
.
16.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
, 2001, “
Management of Stress Fields Around Singular Points in a Finite Element Analysis
,”
J.
Middleton
,
M. L.
Jones
,
N. G.
Shrive
, and
G. N.
Pande
, eds.,
Computer Methods in Biomechanics and Biomedical Engineering
,
Gordon and Breach Science Publishers
, London, p.
57
.
17.
Huiskes
,
R.
, and
Chao
,
E. Y. S.
, 1983, “
A Survey of Finite Element Analysis in Orthopaedic Biomechanics: The First Decade
,”
J. Biomech.
0021-9290,
16
, pp.
385
409
.
18.
Hart
,
R. T.
,
Hennebel
,
V.
,
Thongpreda
,
N.
,
Van Buskirk
,
W. C.
, and
Anderson
,
R. C.
, 1992, “
Modeling the Biomechanics of the Mandible: A Three-Dimensional Finite Element Study
,”
J. Biomech.
0021-9290,
25
, pp.
261
286
.
19.
Marks
,
L. W.
, and
Gardner
,
T. N.
, 1993, “
The Use of Strain Energy as a Convergence Criterion in the Finite Element Modelling of Bone and the Effect of Model Geometry on Stress Convergence
,”
J. Biomed. Eng.
0141-5425,
15
, pp.
474
476
.
20.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1998, “
Sensitivity of Failure Criteria of Cemented Total Hip Replacements to Finite Element Mesh Density
,” presented at the
11th Conf. of the European Society of Biomechanics
, Toulouse, France, July 8–11.
21.
Jeffers
,
J. R. T.
, and
Taylor
,
M.
, 2003, “
Mesh Considerations for Adaptive Finite Element Analyses of Cement Failure in Total Hip Replacement
,” presented at the
2003 Summer Bioengineering Conference
, Florida, June 25–29.
22.
Muccini
,
R.
,
Baleani
,
M.
, and
Viceconti
,
M.
, 2000, “
Selection of the Best Element Type in the Finite Element Analysis of Hip Prostheses
,”
J. Med. Eng. Technol.
0309-1902,
24
(
4
), pp.
145
148
.
23.
Viceconti
,
M.
,
Zannoni
,
C.
,
Testi
,
D.
, and
Cappello
,
A.
, 1990, “
A New Method for the Automatic Mesh Generation of Bone Segments From CT Data
,”
J. Med. Eng. Technol.
0309-1902,
23
(
2
), pp.
77
81
.
24.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
, pp.
969
990
.
25.
Colgan
,
D.
,
Trench
,
P.
,
Slemon
,
D.
,
McTague
,
D.
,
Finlay
,
J. B.
,
O’Donell
,
P.
, and
Little
,
E. G.
, 1994, “
A Review of Joint and Muscle Simulation Relevant to In-Vitro Stress Analysis of the Hip
,”
Strain
,
30
(
2
), pp.
47
61
.
26.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Toni
,
M.
, and
Giunti
,
A.
, 1995, “
Influence of Thigh Muscles on the Axial Strains in a Proximal Femur During Early Stance in Gait
,”
J. Biomech.
0021-9290,
28
(
5
), pp.
617
624
.
27.
Simões
,
J. A.
,
Vaz
,
M. A.
,
Blatcher
,
S.
, and
Taylor
,
M.
, 2000, “
Influence of Head Constraint and Muscle Forces on the Strain Distribution Within the Intact Femur
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
453
459
.
28.
Huiskes
,
R.
, 1990, “
The Various Stress Patterns of Press-Fit, Ingrown and Cemented Femoral Stems
,”
Clin. Orthop. Relat. Res.
0009-921X,
261
, pp.
27
38
.
29.
Prendergast
,
P. J.
, and
Taylor
,
D.
, 1990, “
Stress Analysis of the Proximo-Medial Femur After Total Hip Replacement
,”
J. Biomed. Eng.
0141-5425,
12
, pp.
379
382
.
30.
Tensi
,
H. M.
,
Gese
,
H.
, and
Aschrel
,
R.
, 1989, “
Non-Linear Three Dimensional Finite Element Analysis of a Cementless Hip Prosthesis
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203H
, pp.
215
222
.
31.
Cristofolini
,
L.
, 1997, “
A Critical Analysis of Stress Shielding Evaluation of Hip Prostheses
,”
Crit. Rev. Biomed. Eng.
0278-940X,
25
(
4&5
), pp.
409
483
.
32.
Boggan
,
R. S.
, 1999, “
An In Vitro Comparison of Surface Strain Patterns in Cementless Femoral Arthroplasty
,”
Semin Arthroplasty
,
4
, pp.
143
153
.
33.
Oh
,
I.
, and
Harris
,
W. H.
, 1978, “
Proximal Strain Distribution in the Loaded Femur: An In Vitro Comparison of the Distribution in the Intact Femur and After Insertion of Different Hip-Replacement Femoral Components
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
60
, pp.
75
85
.
34.
Otani
,
T.
,
Leo
,
A.
, and
Whiteside
,
L. A.
, 1992, “
Failure of Cementless Fixation of the Femoral Component in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
23
(
2
), pp.
335
346
.
35.
Cheung
,
G.
,
Zalzal
,
P.
,
Bhandari
,
M.
,
Spelt
,
J. K.
, and
Papini
,
M.
, 2004, “
Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading
,”
Med. Eng. Phys.
1350-4533,
26
, pp.
93
108
.
36.
Stolk
,
J.
,
Verdonschot
,
N.
, and
Huiskes
,
R.
, 2002, “
Stair Climbing is More Detrimental to the Cement in Hip Replacement Than Walking
,”
Clin. Orthop. Relat. Res.
0009-921X,
405
, pp.
294
305
.
37.
Bergmann
,
G.
,
Heller
,
M.
, and
Duda
,
G. M.
, 2001,
Preclinical Testing of Cemented Hip Replacement Implants: Pre-Normative Research for a European Standard
,”
G.
Bergamann
, ed,
Final Report of Workpackage 5: Development of the Loading Configuration
, HIP98,
Free University
, Berlin.
38.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
39.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Durselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
, pp.
883
893
.
40.
Simões
,
J. A.
, and
Vaz
,
M. A.
, 2002, “
The Influence on Strain Shielding of Material Stiffness of Press-Fit Femoral Components
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
, pp.
341
346
.
41.
Pérez
,
M. A.
,
Grasa
,
J.
,
Carcía-Aznar
,
J. M.
,
Bea
,
J. A.
, and
Doblaré
,
M.
, 2006, “
Probabilistic Analysis of the Influence of the Bonding Degree of the Stem-Cement Interface in the Performance of Cemented Hip Prostheses
,”
J. Biomech.
0021-9290 (in press).
42.
Maher
,
A.
, and
Prendergast
,
P. J.
, 2005, “
Discriminating the Loosening Behaviour of Cemented Hip Prostheses Using Measurements of Migration and Inducible Displacement
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
257
265
.
43.
Britton
,
J. R.
,
Walsh
,
L. A.
, and
Prendergast
,
P. J.
, 2004, “
Mechanical Simulation of Muscle Loading on the Proximal Femur: Analysis of Cemented Femoral Component Migration With and Without Muscle Loading
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
7
), pp.
637
646
.
44.
Goetzen
,
N.
,
Lampe
,
F.
,
Nassut
,
R.
, and
Morlock
,
M. M.
, 2005, “
Load-Shift—Numerical Evaluation of a New Design Philosophy for Uncemented Hip Prostheses
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
595
604
.
45.
Hung
,
J. P.
,
Chen
,
J. H.
,
Chiang
,
H. L.
, and
Wu
,
J. S. S.
, 2004, “
Computer Simulation on Fatigue Behavior of Cemented Hip Prostheses: A Physiological Model
,”
Comput. Methods Programs Biomed.
0169-2607,
76
(
2
), pp.
103
113
.
46.
Nogler
,
M.
,
Polikeit
,
A.
,
Wimmer
,
C.
,
Brückner
,
A.
,
Ferguson
,
S. J.
, and
Krismer
,
M.
, 2004, “
Primary Stability of a ROBODOC® Implanted Anatomical Stem Versus Manual Implantation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
2
), pp.
123
129
.
47.
El’Sheikh
,
H. F.
,
MacDonald
,
B. J.
, and
Hashmi
,
M. S. J.
, 2003, “
Finite Element Simulation of the Hip Joint During Stumbling: A Comparison Between Static and Dynamic Loading
,”
J. Mater. Process. Technol.
0924-0136,
143–144
, pp.
249
255
.
48.
Bitsakos
,
C.
,
Kerner
,
J.
,
Fisher
,
I.
, and
Amis
,
A. A.
, 2005, “
The Effect of Muscle Loading on the Simulation of Bone Remodelling in the Proximal Femur
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
133
139
.
You do not currently have access to this content.