Efficacy of topical microbicidal drug delivery formulations against HIV depends in part on their ability to coat, distribute, and be retained on epithelium. Once applied to the vagina, a formulation is distributed by physical forces including: gravity, surface tension, shearing, and normal forces from surrounding tissues, i.e., squeezing forces. The present study focused on vaginal microbicide distribution due to squeezing forces. Mathematical simulations of squeezing flows were compared with squeezing experiments, using model vaginal gel formulations. Our objectives were: (1) to determine if mathematical simulations can accurately describe squeezing flows of vaginal gel formulations; (2) to find the best model and optimized parameter sets to describe these gels; and (3) to examine vaginal coating due to squeezing using the best models and summary parameters for each gel. Squeezing flow experiments revealed large differences in spreadability between formulations, suggesting different coating distributions in vivo. We determined the best squeezing flow models and summary parameters for six test gels of two compositions, cellulose and polyacrylic acid (PAA). We found that for some gels it was preferable to deduce model input parameters directly from squeezing flow experiments. For the cellulose gels, slip conditions in squeezing flow experiments needed to be evaluated. For PAA gels, we found that in the absence of squeezing experiments, rotational viscometry measurements (to determine Herschel-Bulkley parameters) led to reasonably accurate predictions of squeezing flows. Results indicated that yield stresses may be a strong determinant of squeezing flow mechanics. This study serves as a template for further investigations of other gels and determination of which sources of rheological data best characterize potential microbicidal formulations. These mathematical simulations can serve as useful tools for exploring drug delivery parameters, and optimizing formulations, prior to costly clinical trials.

1.
Ahmad
,
K.
, 2002, “
International Drive for Effective Microbicide
,”
Lancet Infectious Diseases
,
2
(
4
), p.
200
.
2.
The Rockefeller Foundation
, 2002, Mobilization for Microbicides: The Decisive Decade.
3.
Stone
,
A.
, 2002, “
Microbicides: A New Approach to Preventing HIV and Other Sexually Transmitted Infections
,”
Nat. Rev. Drug Discovery
1474-1776,
1
, pp.
977
985
.
4.
Lard-Whiteford
,
S. L.
,
Matecka
,
D.
,
O’Rear
,
J. J.
,
Yuen
,
I. S.
,
Litterst
,
C.
, and
Reichelderfer
,
P.
, 2004, “
Recommendations for the Nonclinical Development of Topical Microbicides for Prevention of HIV Transmission: An Update
,”
JAIDS, J. Acquired Immune Defic. Syndr.
1525-4135,
36
(
1
), pp.
541
552
.
5.
Kieweg
,
S. L.
,
Geonnotti
,
A. R.
, and
Katz
,
D. F.
, 2004, “
Gravity-Induced Coating Flows of Vaginal Gel Formulations: In Vitro Experimental Analysis
,”
J. Pharm. Sci.
0022-3549,
93
(
12
), pp.
2941
2952
.
6.
Platzer
,
W.
,
Poisel
,
S.
, and
Hafez
,
E. S. E.
, 1978, in
The Human Vagina
,
Human Reproductive Medicine
, Vol.
2
,
North–Holland
,
Amsterdam
, pp.
39
53
.
7.
Henderson
,
M. H.
,
Peters
,
J. J.
,
Walmer
,
D. K.
,
Couchman
,
G. M.
, and
Katz
,
D. F.
, 2005, “
Optical Instrument for Measurement of Vaginal Coating Thickness by Drug Delivery Formulations
,”
Rev. Sci. Instrum.
0034-6748,
76
(
3
), p.
034302
.
8.
Barnhart
,
K. T.
,
Pretorius
,
E. S.
,
Timbers
,
K.
,
Shera
,
D.
,
Shabbout
,
M.
, and
Malamud
,
D.
, 2004, “
In Vivo Distribution of a Vaginal Gel: MRI Evaluation of the Effects of Gel Volume, Time and Simulated Intercourse
,”
Contraception
0010-7824,
70
, pp.
498
505
.
9.
Brown
,
J.
,
Hooper
,
G.
,
Kenyon
,
C. J.
,
Haines
,
S.
,
Burt
,
J.
,
Humphries
,
J. M.
,
Newman
,
S. P.
,
Davis
,
S. S.
,
Sparrow
,
R. A.
, and
Wilding
,
I. R.
, 1997, “
Spreading and Retention of Vaginal Formulations in Post-Menopausal Women as Assessed by Gamma Scintigraphy
,”
Pharm. Res.
0724-8741,
14
(
8
), pp.
1073
1078
.
10.
Garg
,
S.
,
Kandarapu
,
R.
,
Vermani
,
K.
,
Tambwekar
,
K. R.
,
Garg
,
A.
,
Waller
,
D. P.
, and
Zaneveld
,
L. J. D.
, 2003, “
Development Pharmaceutics of Microbicide Formulations. Part I: Preformulation Considerations and Challenges
,”
AIDS Patient Care STDs
,
17
(
1
), pp.
17
32
.
11.
Garg
,
S.
,
Tambwekar
,
K. R.
,
Vermani
,
K.
,
Kandarapu
,
R.
,
Garg
,
A.
,
Waller
,
D. P.
, and
Zaneveld
,
L. J. D.
, 2003, “
Development Pharmaceutics of Microbicide Formulations. Part II: Formulation, Evaluation, and Challenges
,”
AIDS Patient Care and STDs
,
17
(
8
), pp.
377
399
.
12.
Owen
,
D. H.
,
Peters
,
J. J.
, and
Katz
,
D. F.
, 2001, “
Comparison of the Rheological Properties of Advantage-S and Replens
,”
Contraception
0010-7824,
64
(
6
), pp.
393
396
.
13.
Owen
,
D. H.
,
Peters
,
J. J.
, and
Katz
,
D. F.
, 2000, “
Rheological Properties of Contraceptive Gels
,”
Contraception
0010-7824,
62
, pp.
321
326
.
14.
Owen
,
D. H.
,
Peters
,
J. J.
,
Lavine
,
M. L.
, and
Katz
,
D. F.
, 2003, “
Effect of Temperature and pH on Contraceptive Gel Viscosity
,”
Contraception
0010-7824,
67
(
1
), pp.
57
64
.
15.
Geonnotti
,
A. R.
,
Peters
,
J. J.
, and
Katz
,
D. F.
, 2005, “
Erosion of Microbicide Formulation Coating Layers: Effects of Contact and Shearing With Vaginal Fluid or Semen
,”
J. Pharm. Sci.
0022-3549,
94
(
8
), pp.
1705
1712
.
16.
Vermani
,
K.
,
Garg
,
S.
, and
Zaneveld
,
L. J. D.
, 2002, “
Assemblies for In Vitro Measurement of Bioadhesive Strength and Retention Characteristics in Simulated Vaginal Environment
,”
Drug Dev. Ind. Pharm.
0363-9045,
28
(
9
), pp.
1133
1146
.
17.
Witter
,
F. R.
,
Barditch-Crovo
,
P.
,
Rocco
,
L.
, and
Trapnell
,
C. B.
, 1999, “
Duration of Vaginal Retention and Potential Duration of Antiviral Activity for Five Nonoxynol-9 Containing Intravaginal Contraceptives
,”
Int. J. Gynaecol. Obstet.
0020-7292,
65
(
2
), pp.
165
170
.
18.
Leider
,
P. J.
, and
Bird
,
R. B.
, 1974, “
Squeezing Flow Between Parallel Disks. I. Theoretical Analysis
,”
Ind. Eng. Chem. Fundam.
0196-4313,
13
(
4
), pp.
336
341
.
19.
Leider
,
P. J.
, 1974, “
Squeezing Flow Between Parallel Disks. II. Experimental Results
,”
Ind. Eng. Chem. Fundam.
0196-4313,
13
(
4
), pp.
342
346
.
20.
Covey
,
G. H.
, and
Stanmore
,
B. R.
, 1981, “
Use of the Parallel-Plate Plastometer for the Characterization of Viscous Fluids With a Yield Stress
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
8
(
3–4
), pp.
249
260
.
21.
Adams
,
M. J.
,
Edmondson
,
B.
,
Caughey
,
D. G.
, and
Yahya
,
R.
, 1994, “
An Experimental and Theoretical Study of the Squeeze-Film Deformation and Flow of Elastoplastic Fluids
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
51
, pp.
61
78
.
22.
Laun
,
H. M.
,
Rady
,
M.
, and
Hassager
,
O.
, 1999, “
Analytical Solutions for Squeeze Flow With Partial Wall Slip
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
81
(
1–2
), pp.
1
15
.
23.
Ak
,
M. M.
, and
Gunasekaran
,
S.
, 2000, “
Simulation of Lubricated Squeezing Flow of a Herschel-Bulkley Fluid Under Constant Force
,”
Appl. Rheol.
1430-6395,
10
(
6
), pp.
274
279
.
24.
Yang
,
F.
, 1998, “
Exact Solution for Compressive Flow of Viscoplastic Fluids Under Perfect Slip Wall Boundary Conditions
,”
Rheol. Acta
0035-4511,
37
, pp.
68
72
.
25.
Sherwood
,
J. D.
, and
Durban
,
D.
, 1998, “
Squeeze-Flow of a Herschel-Bulkley Fluid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
77
(
1–2
), pp.
115
121
.
26.
Adams
,
M. J.
,
Aydin
,
I.
,
Briscoe
,
B. J.
, and
Sinha
,
S. K.
, 1997, “
A Finite Element Analysis of the Squeeze Flow of an Elasto-Viscoplastic Paste Material
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
71
(
1–2
), pp.
41
57
.
27.
Chan
,
T. W.
, and
Baird
,
D. G.
, 2002, “
An Evaluation of a Squeeze Flow Rheometer for the Rheological Characterization of a Filled Polymer With a Yield Stress
,”
Rheol. Acta
0035-4511,
41
(
3
), pp.
245
256
.
28.
Meeten
,
G. H.
, 2004, “
Squeeze Flow of Soft Solids Between Rough Surfaces
,”
Rheol. Acta
0035-4511,
43
, pp.
6
16
.
29.
Meeten
,
G. H.
, 2002, “
Constant-Force Squeeze Flow of Soft Solids
,”
Rheol. Acta
0035-4511,
41
, pp.
557
566
.
30.
Meeten
,
G. H.
, 2000, “
Yield Stress of Structured Fluids Measured by Squeeze Flow
,”
Rheol. Acta
0035-4511,
39
(
4
), pp.
399
408
.
31.
Campanella
,
O. H.
, and
Peleg
,
M.
, 1987, “
Determination of the Yield Stress of Semiliquid Foods From Squeezing Flow Data
,”
J. Food. Sci.
0022-1147,
52
(
1
), pp.
214
–215,
217
.
32.
Plenys
,
A. M.
, 2000, “
Mechanical Analysis of Topical Drug Delivery Gels for Women’s Reproductive Health
,” Ph.D. thesis, Duke University.
33.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
, 1983, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
0167-8299,
1
(
1
), pp.
1
70
.
34.
Macosko
,
C.
, 1994,
Rheology Principles, Measurements, and Applications
, 4th ed.
Wiley-VCH
,
New York
, pp.
166
169
.
35.
Roberts
,
G. P.
,
Barnes
,
H. A.
, and
Carew
,
P.
, 2001, “
Modelling the Flow Behaviour of Very Shear-Thinning Liquids
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
5617
5623
.
36.
Perl
,
J. I.
,
Milles
,
G.
, and
Shimozato
,
Y.
, 1959, “
Vaginal Fluid Subsequent to Panhysterectomy
,”
Am. J. Obstet. Gynecol.
0002-9378,
78
(
2
), pp.
285
289
.
37.
Owen
,
D. H.
, and
Katz
,
D. F.
, 1999, “
A Vaginal Fluid Simulant
,”
Contraception
0010-7824,
59
(
2
), pp.
91
95
.
38.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids: Fluid Mechanics
, 2nd ed.,
1
,
Wiley
,
New York
.
39.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H. J.
, 2003, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
1476-1122,
2
, pp.
221
227
.
40.
de Gennes
,
P. G.
, 2002, “
On Fluid/Wall Slippage
,”
Langmuir
0743-7463,
18
(
9
), pp.
3413
3414
.
41.
Horn
,
R. G.
,
Vinogradova
,
O. I.
,
Mackay
,
M. E.
, and
Phan-Thien
,
N.
, 2000, “
Hydrodynamic Slippage Inferred From Thin Film Drainage Measurements in a Solution of Nonadsorbing Polymer
,”
J. Chem. Phys.
0021-9606,
112
(
14
), pp.
6424
6433
.
42.
Lee
,
S. J.
,
Campanella
,
O. H.
, and
Peleg
,
M.
, 1989, “
Squeezing Flow of a Double Layered Array of 2 Newtonian Liquids
,”
Chem. Eng. Sci.
0009-2509,
44
(
12
), pp.
2979
2986
.
43.
Campanella
,
O. H.
,
Popplewell
,
L. M.
,
Rosenau
,
J. R.
, and
Peleg
,
M.
, 1987, “
Elongational Viscosity Measurements of Melting American Process Cheese
,”
J. Food. Sci.
0022-1147,
52
(
5
), pp.
1249
1251
.
44.
Campanella
,
O. H.
, and
Peleg
,
M.
, 1987, “
Squeezing Flow Viscosimetry of Peanut Butter
,”
J. Food. Sci.
0022-1147,
52
(
1
), pp.
180
184
.
45.
Sherwood
,
J. D.
, and
Durban
,
D.
, 1996, “
Squeeze Flow of a Power-Law Viscoplastic Solid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
62
(
1
), pp.
35
54
.
46.
Kvalseth
,
T. O.
, 1985, “
Cautionary Note About R2
,”
Am. Stat.
0003-1305,
39
(
4
),
279
285
.
47.
Tang
,
H. S.
, and
Kalyon
,
D. M.
, 2004, “
Estimation of the Parameters of Herschel-Bulkley Fluid Under Wall Slip Using a Combination of Capillary and Squeeze Flow Viscometers
,”
Rheol. Acta
0035-4511,
43
(
1
), pp.
80
88
.
48.
Nasseri
,
S.
,
Bilston
,
L.
,
Fasheun
,
B.
, and
Tanner
,
R.
, 2004, “
Modelling the Biaxial Elongational Deformation of Soft Solids
,”
Rheol. Acta
0035-4511,
43
(
1
), pp.
68
79
.
49.
Zhang
,
W.
,
Silvi
,
N.
, and
Vlachopoulos
,
J.
, 1995, “
Modeling and Experiments of Squeezing Flow of Polymer Melts
,”
Int. Polym. Process.
0930-777X,
10
(
2
), pp.
155
164
.
50.
Roberts
,
G. P.
, and
Barnes
,
H. A.
, 2001, “
New Measurements of the Flow-Curves for Carbopol Dispersions Without Slip Artefacts
,”
Rheol. Acta
0035-4511,
40
(
5
), pp.
499
503
.
51.
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1977, “
A New Constitutive Equation Derived From Network Theory
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
2
, pp.
353
365
.
52.
Phan-Thien
,
N.
, 1978, “
A Nonlinear Network Viscoelastic Model
,”
J. Rheol.
0148-6055,
22
(
3
), pp.
259
283
.
53.
Phan-Thien
,
N.
,
Sugeng
,
F.
, and
Tanner
,
R.
, 1987, “
The Squeeze-Film Flow of a Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
24
, pp.
97
119
.
54.
Turian
,
R. M.
, 1964, “
Thermal Phenomena and Non-Newtonian Viscometry
,” Ph.D. thesis, University of Wisconsin, Madison.
You do not currently have access to this content.