Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This paper describes the flow dynamics in two representative models of a terminal aneurysm of the basilar artery under Newtonian and non-Newtonian fluid assumptions, and compares their hemodynamics with that of a healthy basilar artery. Virtual aneurysm models are investigated numerically, with geometric features defined by β=0deg and β=23.2deg, where β is the tilt angle of the aneurysm dome with respect to the basilar artery. The intra-aneurysmal pulsatile flow shows complex ring vortex structures for β=0deg and single recirculation regions for β=23.2deg during both systole and diastole. The pressure and shear stress on the aneurysm wall exhibit large temporal and spatial variations for both models. When compared to a non-Newtonian fluid, the symmetric aneurysm model (β=0deg) exhibits a more unstable Newtonian flow dynamics, although with a lower peak wall shear stress than the asymmetric model (β=23.2deg). The non-Newtonian fluid assumption yields more stable flows than a Newtonian fluid, for the same inlet flow rate. Both fluid modeling assumptions, however, lead to asymmetric oscillatory flows inside the aneurysm dome.

1.
Schievink
,
W. I.
, 1997, “
Intracranial Aneurysms
,”
N. Engl. J. Med.
0028-4793,
336
, pp.
28
40
.
2.
Wardlaw
,
J. M.
, and
White
,
P. M.
, 2000, “
The Detection and Management of Unruptured Intracranial Aneurysms
,”
Brain
0006-8950,
123
, pp.
205
221
.
3.
Molyneux
,
A.
,
Kerr
,
R.
,
Stratton
,
I.
,
Sandercock
,
P.
,
Clarke
,
M.
,
Shrimpton
,
J.
, and
Holman
,
R.
;
ISAT Collaborative Group
, 2002, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomized Trial
,”
Lancet
0140-6736,
360
, pp.
1267
1274
.
4.
Wiebers
,
D. O.
,
Whisnant
,
J. P.
,
Huston
,
J.
, III
,
Meissner
,
I.
,
Brown
,
R. D.
, Jr.
,
Piepgras
,
D. G.
,
Forbes
,
G. S.
,
Thielen
,
K.
,
Nichols
,
D.
,
O’Fallon
,
W. M.
,
Peacock
,
J.
,
Jaeger
,
L.
,
Kassell
,
N. F.
,
Kongable-Beckman
,
G. L.
, and
Torner
,
J. C.
,
International Study of Unruptured Intracranial Aneurysms Investigators (ISUIA
, 2003, “
Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment
,”
Lancet
0140-6736,
362
, pp.
103
110
.
5.
Van Gijn
,
J.
, and
Rinkel
,
G. J. E.
, 2001, “
Subarachnoid Haemorrhage: Diagnosis, Causes and Management
,”
Brain
0006-8950,
124
, pp.
249
278
.
6.
Hoh
,
B. L.
,
Putman
,
C. M.
,
Budzik
,
R. F.
,
Carter
,
B. S.
, and
Ogilvy
,
C. S.
, 2001, “
Combined Surgical and Endovascular Techniques of Flow Alteration to Treat Fusiform and Complex Wide-Necked Intracranial Aneurysms that are Unsuitable for Clipping or Coil Embolization
,”
J. Neurosurg.
0022-3085,
95
, pp.
24
35
.
7.
Finol
,
E. A.
, and
Amon
,
C. H.
, 2001, “
Blood Flow in Abdominal Aortic Aneurysms: Pulsatile Flow Hemodynamics
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
474
484
.
8.
Finol
,
E. A.
,
Keyhani
,
K.
, and
Amon
,
C. H.
, 2003, “
The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
207
217
.
9.
Shkolnik
,
A. D.
,
Scotti
,
C. M.
,
Amon
,
C. H.
, and
Finol
,
E. A.
, 2005, “
Computational Modeling of Abdominal Aortic Aneurysms: An Assessment of Rupture Potential for Presurgical Planning
,” in
Biomechanics Applied to Computer Assisted Surgery
,
Payan
,
Y.
ed.,
Research Signpost publisher
, Kerala, India, pp.
243
260
.
10.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
, 2005, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
1475-925X,
4
(
64
).
11.
Weir
,
B.
,
Amidei
,
C.
,
Kongable
,
G.
,
Findlay
,
J. M.
,
Kassell
,
N. F.
,
Kelly
,
J.
,
Dai
,
L.
, and
Karrison
,
T. G.
, 2003, “
The Aspect Ratio (dome/neck) of Ruptured and Unruptured Aneurysms
,”
J. Neurosurg.
0022-3085,
99
, pp.
447
451
.
12.
Liou
,
T. M.
, and
Liou
,
S. N.
, 1999, “
A Review on in vitro Studies of Hemodynamic Characteristics in Terminal and Lateral Aneurysm Models
,”
Proceedings of the National Science Council, Republic of China, Part B, Life Sciences
,
23
, pp.
133
148
.
13.
Imbesi
,
S. G.
, and
Kerber
,
C. W.
, 2001, “
Analysis of Slipstream Flow in a Wide-Necked Basilar Artery Aneurysm: Evaluation of Potential Treatment Regimens
,”
AJNR Am. J. Neuroradiol.
0195-6108,
22
, pp.
721
724
.
14.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
, 2002, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
768
777
.
15.
Tateshima
,
S.
,
Murayama
,
Y.
,
Villablanca
,
J. P.
,
Morino
,
T.
,
Takahashi
,
H.
,
Yamauchi
,
T.
,
Tanishita
,
K.
, and
Viñuela
,
F.
, 2001, “
Intraaneurysmal Flow Dynamics Study Featuring an Acrylic Aneurysm Model Manufactured Using a Computerized Tomography Angiogram as a Mold
,”
J. Neurosurg.
0022-3085,
95
, pp.
1020
1027
.
16.
Tateshima
,
S.
,
Viñuela
,
F.
,
Villablanca
,
J. P.
,
Murayama
,
Y.
,
Morino
,
T.
,
Nomura
,
K.
, and
Tanishita
,
K.
, 2003, “
Three-Dimensional Blood Flow Analysis in a Wide Necked Internal Carotid Artery-Ophthalmic Artery Aneurysm
,”
J. Neurosurg.
0022-3085,
99
, pp.
526
533
.
17.
Tateshima
,
S.
,
Murayama
,
Y.
,
Villablanca
,
J. P.
,
Morino
,
T.
,
Nombra
,
K.
,
Tanishita
,
K.
, and
Viñuela
,
F.
, 2003, “
In vitro Measurements of Fluid-Induced Wall Shear Stress in Unruptured Cerebral Aneurysms Harboring Blebs
,”
Stroke
0039-2499,
34
, pp.
187
192
.
18.
Ujiie
,
H.
,
Tachibana
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
, 1999, “
Effects of Size and Shape (aspect ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
45
, pp.
119
130
.
19.
Jou
,
L.-D.
,
Saloner
,
D.
, and
Higashida
,
R.
, 2004, “
Determining Intra-Aneurysmal Flow for Coiled Cerebral Aneurysms with Digital Fluoroscopy
,”
Biomed. Eng. Appl. Basis Commun.
1016-2356,
16
, pp.
43
48
.
20.
Jou
,
L.-D.
,
Quick
,
C. M.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Martin
,
A.
, and
Saloner
,
D.
, 2003, “
Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
1804
1810
.
21.
Foutrakis
,
G.
,
Yonas
,
H.
, and
Sclabassi
,
R.
, 1999, “
Saccular Aneurysm Formation in Curved and Bifurcating Arteries
,”
AJNR Am. J. Neuroradiol.
0195-6108,
20
, pp.
1309
1317
.
22.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
559
566
.
23.
Cebral
,
J. R.
,
Hernández
,
M.
, and
Frangi
,
A. F.
, 2003, “
Computational Analysis of Blood Flow Dynamics in Cerebral Aneurysms From CTA and 3D Rotational Angiography Image Data
,” International Congress on Computational Bioengineering, Zaragoza, Spain, Sept. 24–26.
24.
Melbin
,
P. C. P.
, and
Nesto
,
R. W.
, 2002, “
Scholarly Review of Geometry and Compliance: Biomechanical Perspectives on Vascular Injury and Healing
,”
ASAIO J.
1058-2916,
48
, pp.
337
345
.
25.
MacDonald
,
D. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2000, “
Directional Wall Strength in Saccular Brain Aneurysms From Polarized Light Microscopy
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
533
542
.
26.
Hsiai
,
T. K.
,
Cho
,
S. K.
,
Honda
,
H. M.
,
Hama
,
S.
,
Navab
,
M.
,
Demer
,
L. L.
, and
Ho
,
C. M.
, 2002, “
Endothelial Cell Dynamics Under Pulsating Flows: Significance of High Versus Low Shear Stress Slew Rates (∂τ∕∂t)
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
646
656
.
27.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
0021-9290,
33
, pp.
975
984
.
28.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
0021-9290,
32
, pp.
601
608
.
29.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
, 2004, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
264
273
.
30.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
, 2005, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
0022-3085,
102
, pp.
355
362
.
31.
Parlea
,
L.
,
Fahrig
,
R.
,
Holdsworth
,
D. W.
, and
Lownie
,
S. P.
, 1999, “
An Analysis of the Geometry of Saccular Intracranial Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
20
, pp.
1079
1089
.
32.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
, 2004, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
0021-9290,
37
, pp.
709
720
.
33.
Kim
,
S.
, 2002, A study of non-Newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer, thesis, Drexel University, Philadelphia, PA.
34.
Guppy
,
K. H.
,
Charbel
,
F. T.
,
Corsten
,
L. A.
,
Zhao
,
M.
, and
Debrum
,
G.
, 2002, “
Hemodynamic Evaluation of Basilar and Vertebral Artery Angioplasty
,”
Neurosurgery
0148-396X,
51
, pp.
327
333
.
35.
Owega
,
A.
,
Klingelhöfer
,
J.
,
Sabri
,
O.
,
Jürgen
,
H.
,
Albers
,
M.
,
Saß
,
H.
, 1998, “
Cerebral Blood Flow Velocity in Acute Schizophrenic Patients: A Transcranial Doppler Ultrasonography Study
,”
Stroke
0039-2499,
29
, pp.
1149
1154
.
36.
Holdsworth
,
D. W.
,
Norley
,
C. J. D.
,
Frayne
,
R.
,
Steinmam
,
D. A.
, and
Rutt
,
B.
K.
, 1999, “
Characterization of Common Carotid Artery Blood-Flow Waveforms in Normal Human Subjects
,”
Physiol. Meas
0967-3334,
20
, pp.
219
240
.
37.
Schweizer
,
J.
,
Mück-Weymann
,
M.
, and
Klemm
,
E.
, 1996, “
Messung des Basilaris-flußgeschwindigkeit Mittels TCD und TCCD
,”
Ultraschall Med.
0172-4614,
17
, pp.
68
71
.
38.
Baumgartner
,
R. W.
,
Schmid
,
C.
, and
Baumgartner
,
I.
, 1996, “
Comparative Study of Power-Based Versus Mean Frequency-Based Transcranial Color-Codex Duplex Sonography in Normal Adults
,”
Stroke
0039-2499,
27
, pp.
101
104
.
39.
Zamir
,
M.
, 2000,
The physics of pulsatile flow
,
Springer-Verlag
, New York.
40.
Ferziger
,
J. H.
,
Perić
,
M.
, 1997,
Computational methods for fluid dynamics
,
Springer-Verlag
, Berlin.
41.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Appanaboyina
,
S.
,
Putman
,
Ch. M.
,
Millan
,
D.
,
Frangi
,
A. F.
, 2005, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
0278-0062,
24
, pp.
457
467
.
42.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
, 2004, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
0039-2499,
35
, pp.
2500
2505
.
43.
Hoi
,
Y.
,
Meng
,
H.
,
Woodward
,
S. H.
,
Bendok
,
B. R.
,
Hanel
,
R. A.
,
Guterman
,
L. R.
, and
Hopkins
,
L. N.
, 2004, “
Effects of Arterial Geometry on Aneurysm Growth: Three-Dimensional Computational Fluid Dynamics Study
,”
J. Neurosurg.
0022-3085,
101
, pp.
676
681
.
44.
Steinman
,
D. A.
,
Kehoe
,
S. C.
,
Ford
,
M. D.
,
Nikolov
,
H. N.
, and
Holdsworth
,
D. W.
, 2003, “
Dancing on the Knife-Edge of Symmetry: On the Misuse of Symmetric Models for Studying Blood Flow Dynamics
,”
Proceedings of ASME 2003 Summer Bioengineering Conference
,
Key Biscayne
, FL, June 25–29, pp.
1251
1252
.
45.
Hassan
,
T.
,
Timofeev
,
E. V.
,
Saito
,
T.
,
Shimizu
,
H.
,
Ezura
,
M.
,
Tominaga
,
T.
,
Takahashi
,
A.
, and
Takayama
,
K.
, 2004, “
Computational Replicas: Anatomic Reconstructions of Cerebral Vessels as Volume Numerical Grids at Three-Dimensional Angiography
,”
AJNR Am. J. Neuroradiol.
0195-6108,
25
, pp.
1356
1365
.
You do not currently have access to this content.