This paper presents a constitutive model for predicting the nonlinear viscoelastic behavior of soft biological tissues and in particular of ligaments. The constitutive law is a generalization of the well-known quasi-linear viscoelastic theory (QLV) in which the elastic response of the tissue and the time-dependent properties are independently modeled and combined into a convolution time integral. The elastic behavior, based on the definition of anisotropic strain energy function, is extended to the time-dependent regime by means of a suitably developed time discretization scheme. The time-dependent constitutive law is based on the postulate that a constituent-based relaxation behavior may be defined through two different stress relaxation functions: one for the isotropic matrix and one for the reinforcing (collagen) fibers. The constitutive parameters of the viscoelastic model have been estimated by curve fitting the stress relaxation experiments conducted on medial collateral ligaments (MCLs) taken from the literature, whereas the predictive capability of the model was assessed by simulating experimental tests different from those used for the parameter estimation. In particular, creep tests at different maximum stresses have been successfully simulated. The proposed nonlinear viscoelastic model is able to predict the time-dependent response of ligaments described in experimental works (Bonifasi-Lista et al., 2005, J. Orthopaed. Res., 23, pp. 67–76;Hingorani et al., 2004, Ann. Biomed. Eng., 32, pp. 306–312;Provenzano et al., 2001, Ann. Biomed. Eng., 29, pp. 908–214;Weiss et al., 2002, J. Biomech., 35, pp. 943–950). In particular, the nonlinear viscoelastic response which implies different relaxation rates for different applied strains, as well as different creep rates for different applied stresses and direction-dependent relaxation behavior, can be described.

1.
Spencer
,
A. J. M.
, 2002,
Continuum Theory of the Mechanics of Fibre-reinforced Composites
,
Springer
,
New York
.
2.
Quapp
,
K. M.
, and
Weiss
,
J. A.
, 1998, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
757
763
.
3.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation in Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
4.
Holzapfel
,
G. A.
,
Eberlein
,
R.
,
Wriggers
,
P.
, and
Weizsäcker
,
H. W.
, 1996, “
Large Strain Analysis of Soft Biological Membranes: Formulation and Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
132
, pp.
45
61
.
5.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium. I. A New Functional Form
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
333
339
.
6.
Klisch
,
S.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
0021-9290,
32
, pp.
1027
1036
.
7.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2000, “
A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
173
179
.
8.
Vena
,
P.
,
Contro
,
R.
,
Pietrabissa
,
R.
, and
Ambrosio
,
L.
, 1998, “
Design of Materials Subject to Biomechanical Compatibility Constraints
,”
Solid Mechanics and its Applications
,
P.
Pedersen
and
M.
Bendsoe
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
67
78
.
9.
Limbert
,
G.
,
Middleton
,
J.
, and
Taylor
,
M.
, 2004, “
Finite Element Analysis of the Human ACL Subjected to Passive Anterior Tibial Loads
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
, pp.
1
8
.
10.
Hirokawa
,
S.
, and
Tsuruno
,
R.
, 2000, “
Three-Dimensional Deformation and Stress Distribution in an Analytical∕Computational Model of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
33
, pp.
1069
1077
.
11.
Pioletti
,
D.
, 1997, “
Viscoelastic Properties of Soft Tissues: Application to Knee Ligaments and Tendons
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne.
12.
Pioletti
,
D.
, and
Rakotomanana
,
L. R.
, 2000, “
On the Independence of Time and Strain Effects in the Stress Relaxation of Ligaments and Tendons
,”
J. Biomech.
0021-9290,
33
, pp.
1729
1732
.
13.
Pioletti
,
D.
,
Rakotomanana
,
L. R.
,
Benvenuti
,
J.
, and
Leyvraz
,
P. F.
, 1998, “
Viscoelastic Constitutive Law in Large Deformation: Application to Human Knee Ligaments and Tendons
,”
J. Biomech.
0021-9290,
31
, pp.
753
757
.
14.
Hingorani
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
, Jr.
, 2004, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
306
312
.
15.
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Keenan
,
T.
, and
Vanderby
,
R.
, Jr.
, 2001, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
908
214
.
16.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
, 2002, “
Ligament Material Behavior is Nonlinear, Viscoelastic and Rate-Independent Under Shear Loading
,”
J. Biomech.
0021-9290,
35
, pp.
943
950
.
17.
Bonifasi-Lista
,
C. L.
,
Lake
,
S. P.
,
Small
,
M. S.
, and
Weiss
,
J. A.
, 2005, “
Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading
,”
J. Orthop. Res.
0736-0266,
23
, pp.
67
76
.
18.
Fung
,
Y. C.
, 1973, “
Biorheology of Soft Tissues
,”
Biorheology
0006-355X,
10
, pp.
139
155
.
19.
Johnson
,
G. A.
,
Livesay
,
G. A.
,
Woo
,
S. L. Y.
, and
Rajagopal
,
K. R.
, 1996, “
A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
221
226
.
20.
Limbert
,
G.
, and
Taylor
,
M.
, 2002, “
On the Constitutive Modeling of Biological Soft Connective Tissues. A General Theoretical Framework and Explicit Forms of the Tensors of Elasticity for Strongly Anisotropic Continuum Fiber-Reinforced Composites at Finite Strain
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
2343
2358
.
21.
Fung
,
Y. C.
, and
Tong
,
P.
, 2001,
Classical and Computational Solids Mechanics
,
World Scientific
,
Singapore
.
22.
Vena
,
P.
, and
Contro
,
R.
, 1999, “
A Viscoelastic Model for Anisotropic Biological Tissues in Finite Strain
,”
Proc. of the European Conference on Computational Mechanics
,
W.
Wunderlich
(ed.), TU Munchen CD-Rom.
23.
Simo
,
J. C.
, 1987, “
On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
60
, pp.
153
173
.
24.
Holzapfel
,
G.
, and
Gasser
,
T. C.
, 2001, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strain: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4379
4403
.
25.
Puso
,
M. A.
, and
Weiss
,
J. A.
, 1998, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
62
70
.
26.
Hibbit, Karlsson, and Sorensen
, 2004,
ABAQUS User's Manual
,
ABAQUS Inc.
27.
Redaelli
,
A.
,
Vesentini
,
S.
,
Soncini
,
M.
,
Vena
,
P.
,
Mantero
,
S.
, and
Montevecchi
,
F. M.
, 2003, “
Possible Role of Decorin Glycosaminoglycans in Fibril to Fibril Force Transfer in Relative Mature Tendons—A Computational Study From Molecular to Microstructural Level
,”
J. Biomech.
0021-9290,
36
, pp.
1555
1569
.
28.
Holzapfel
,
G. A.
,
Gasser
,
T. A.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
29.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2004, “
A Rheological Network Model for the Continuum Anisotropic and Viscoelastic Behaviour of Soft Tissues
,”
Biomech. Modeling in Mechanobiol.
,
3
, pp.
56
65
.
You do not currently have access to this content.