Although single-loop tibialis tendon allografts have increased in popularity owing to their many advantages over patellar tendon and double-loop hamstring tendon autografts, some percentage of the patient population do not have clinically stable knees following anterior cruciate ligament reconstruction with single-loop tibialis tendon allografts. Therefore, it would be advantageous to determine the causes of increased anterior laxity which ultimately must be traced to lengthening of the graft construct. One objective of this study was to demonstrate the feasibility of using Roentgen stereophotogrammetric analysis (RSA) to determine the causes of lengthening of a single-loop graft construct subjected to cyclic loading. A second objective was to determine which cause(s) contributes most to an increase in length of this graft construct. Radio-opaque markers were inserted into ten grafts to measure the lengthening at the sites of the tibial and femoral fixations and between the sites of fixation. Each graft was passed through a tibial tunnel in a calf tibia, looped around a rigid cross-pin, and fixed to the tibia with a Washerloc fixation device. The grafts were cyclically loaded for 225,000 cycles from 20to170N. Prior to and at intervals during the cyclic loading, simultaneous radiographs were taken. RSA was used to determine the three-dimensional coordinates of the markers from which the lengthening at the sites of fixation and between the sites of fixation was computed at each interval. The sites of the femoral and tibial fixations were the largest contributors to the increase in length of the graft construct, with maximum average values of 0.68 and 0.55 mm, respectively, after 225,000 cycles. The graft substance between the sites of fixation contributed least to lengthening of the graft, with a maximum average value of 0.31 mm. Ninety percent of the maximum average values occurred before 100,000 cycles of loading for the largest contributors. RSA proved to be a useful method for measuring lengthening due to all three causes. Lengthening of the graft construct at the sites of both fixations is sufficiently large that the combined contributions may manifest as a clinically important increase in anterior laxity.

1.
Nyland
,
J.
,
Caborn
,
D. N.
,
Rothbauer
,
J.
,
Kocabey
,
Y.
, and
Couch
,
J.
, 2003, “
Two-Year Outcomes Following ACL Reconstruction with Allograft Tibialis Anterior Tendons: A Retrospective Study
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
, pp.
212
218
.
2.
Caborn
,
D. N.
, and
Selby
,
J. B.
, 2002, “
Allograft Anterior Tibialis Tendon with Bioabsorbable Interference Screw Fixation in Anterior Cruciate Ligament Reconstruction
,”
Arthroscopy: J. Relat.Surg.
0749-8063,
18
, pp.
102
105
.
3.
Chang
,
S. K.
,
Egami
,
D. K.
,
Shaieb
,
M. D.
,
Kan
,
D. M.
, and
Richardson
,
A. B.
, 2003, “
Anterior Cruciate Ligament Reconstruction: Allograft Versus Autograft
,”
Arthroscopy: J. Relat.Surg.
0749-8063,
19
, pp.
453
462
.
4.
Pearsall
,
A. W. T.
,
Hollis
,
J. M.
,
Russell
,
G. V.
, Jr.
, and
Scheer
,
Z.
, 2003, “
A Biomechanical Comparison of Three Lower Extremity Tendons for Ligamentous Reconstruction About the Knee
,”
Arthroscopy: J. Relat.Surg.
0749-8063,
19
, pp.
1091
1096
.
5.
Haut Donahue
,
T. L.
,
Howell
,
S. M.
,
Hull
,
M. L.
, and
Gregersen
,
C.
, 2002, “
A Biomechanical Evaluation of Anterior and Posterior Tibialis Tendons as Suitable Single-Loop Anterior Cruciate Ligament Grafts
,”
Arthroscopy: J. Relat.Surg.
0749-8063,
18
, pp.
589
597
.
6.
Giurea
,
M.
,
Zorilla
,
P.
,
Amis
,
A. A.
, and
Aichroth
,
P.
, 1999, “
Comparative Pull-Out and Cyclic-Loading Strength Tests of Anchorage of Hamstring Tendon Grafts in Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
27
, pp.
621
625
.
7.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
, 1999, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
0363-5465,
27
, pp.
35
43
.
8.
Cuppone
,
M.
, and
Seedhom
,
B. B.
, 2001, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity after ACL Reconstruction with an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
0949-2658,
6
, pp.
253
261
.
9.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
How Cyclic Loading Affects the Migration of Radio-Opaque Markers Attached to Tendon Grafts Using a New Method: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
62
69
.
10.
Roos
,
P. J.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2004, “
Lengthening of Double-Looped Tendon Graft Constructs in Three Regions after Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
22
, pp.
839
846
.
11.
Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made from Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
162
169
.
12.
Adam
,
F.
,
Pape
,
D.
,
Schiel
,
K.
,
Steimer
,
O.
,
Kohn
,
D.
, and
Rupp
,
S.
, 2004, “
Biomechanical Properties of Patellar and Hamstring Graft Tibial Fixation Techniques in Anterior Cruciate Ligament Reconstruction: Experimental Study with Roentgen Stereometric Analysis
,”
Am. J. Sports Med.
0363-5465,
32
, pp.
71
78
.
13.
Beynnon
,
B. D.
, and
Johnson
,
R. J.
, 1996, “
Anterior Cruciate Ligament Injury Rehabilitation in Athletes. Biomechanical Considerations
,”
Sports Med.
0112-1642,
22
, pp.
54
64
.
14.
Shelbourne
,
K. D.
, and
Nitz
,
P.
, 1990, “
Accelerated Rehabilitation after Anterior Cruciate Ligament Reconstruction
,”
Am. J. Sports Med.
0363-5465,
18
, pp.
292
299
.
15.
Morrison
,
J. B.
, 1969, “
Function of the Knee Joint in Various Activities
,”
Biomed. Eng.
0006-2898,
4
, pp.
573
580
.
16.
Brown
,
G. A.
,
Pena
,
F.
,
Grontvedt
,
T.
,
Labadie
,
D.
, and
Engebretsen
,
L.
, 1996, “
Fixation Strength of Interference Screw Fixation in Bovine, Young Human, and Elderly Human Cadaver Knees: Influence of Insertion Torque, Tunnel-Bone Block Gap, and Interference
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
3
, pp.
238
244
.
17.
Weiler
,
A.
,
Hoffmann
,
R. F.
,
Stahelin
,
A. C.
,
Bail
,
H. J.
,
Siepe
,
C. J.
, and
Sudkamp
,
N. P.
, 1998, “
Hamstring Tendon Fixation Using Interference Screws: A Biomechanical Study in Calf Tibial Bone
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
14
, pp.
29
37
.
18.
Weiler
,
A.
,
Windhagen
,
H. J.
,
Raschke
,
M. J.
,
Laumeyer
,
A.
, and
Hoffmann
,
R. F.
, 1998, “
Biodegradable Interference Screw Fixation Exhibits Pull-out Force and Stiffness Similar to Titanium Screws
,”
Am. J. Sports Med.
0363-5465,
26
, pp.
119
126
.
19.
van Dijk
,
R.
,
Huiskes
,
R.
, and
Selvik
,
G.
, 1979, “
Roentgen Stereophotogrammetric Methods for the Evaluation of the Three Dimensional Kinematic Behaviour and Cruciate Ligament Length Patterns of the Human Knee Joint
,”
J. Biomech.
0021-9290,
12
, pp.
727
731
.
20.
Smith
,
C. K.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
Migration of Radio-Opaque Markers Injected into Tendon Grafts: A Study Using Roentgen Stereophotogrammetric Analysis (RSA)
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
887
890
.
21.
Roos
,
P. J.
,
Neu
,
C. P.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2005, “
A New Tibial Coordinate System Improves the Precision of Anterior-Posterior Knee Laxity Measurements: A Cadaveric Study Using Roentgen Stereophotogrammetric Analysis
,”
J. Orthop. Res.
0736-0266,
23
, pp.
327
333
.
22.
Rodeo
,
S. A.
,
Arnoczky
,
S. P.
,
Torzilli
,
P. A.
,
Hidaka
,
C.
, and
Warren
,
R. F.
, 1993, “
Tendon-Healing in a Bone Tunnel. A Biomechanical and Histological Study in the Dog
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
75
, pp.
1795
1803
.
You do not currently have access to this content.