Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.

1.
Clark
,
R. E.
, 1973, “
Stress-Strain Characteristics of Fresh and Frozen Human Aortic and Mitral Leaflets and Chordae Tendinae
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
66
(
2
), pp.
202
208
.
2.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin—II. Experimental Results
,”
J. Biomech.
0021-9290,
7
(
2
), pp.
171
182
.
3.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
Berlin
.
4.
Ghista
,
D. N.
, and
Rao
,
A. P.
, 1973, “
Mitral-Valve Mechanics—Stress/Strain Characteristics of Excised Leaflets, Analysis of Its Functional Mechanics and Its Medical Application
,”
Med. Biol. Eng.
0025-696X,
11
(
6
), pp.
691
702
.
5.
Lanir
,
Y.
, and
Fung
,
Y. C.
, 1974, “
Two-Dimensional Mechanical Properties of Rabbit Skin—I. Experimental System
,”
J. Biomech.
0021-9290,
7
(
1
), pp.
29
34
.
6.
Vito
,
R. P.
, 1980, “
The Mechanical Properties of Soft Tissues—I: A Mechanical System for Biaxial Testing
,”
J. Biomech.
0021-9290,
13
(
11
), pp.
947
950
.
7.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1997, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial stretch
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
753
756
.
8.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological materials
,”
J. Elast.
0374-3535,
61
, pp.
199
244
.
9.
Sacks
,
M. S.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
251
284
.
10.
Fung
,
Y. C.
, 1973, “
Biorheology of Soft Tissues
,”
Biorheology
0006-355X,
10
(
2
), pp.
139
155
.
11.
Chew
,
P. H.
,
Yin
,
F. C. P.
, and
Zeger
,
S. L.
, 1986, “
Biaxial Stress-Strain Properties of Canine Pericardium
,”
J. Mol. Cell. Cardiol.
0022-2828,
18
(
6
), pp.
567
578
.
12.
May-Newman
,
K.
, and
Yin
,
F. C. P.
, 1995, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
0002-9513,
269
, pp.
H1319
H1327
.
13.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
14.
Lanir
,
Y.
,
Lichtenstein
,
O.
, and
Immanuel
,
O.
, 1996, “
Optimal Design of Biaxial Tests for Structural Material Characterization of Flat Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
41
47
.
15.
Nielsen
,
P. M. F.
,
Hunter
,
P. J.
, and
Smaill
,
B. H.
, 1991, “
Biaxial Testing of Membrane Biomaterials: Testing Equipment and Procedures
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
295
300
.
16.
Nielsen
,
P. M. F.
,
Malcolm
,
D. T. K.
,
Hunter
,
P. J.
, and
Charette
,
P. G.
, 2002, “
Instrumentation and Procedures for Estimating The Constitutive Parameters of Inhomogeneous Elastic Membranes
,”
Biomechan. Model. Mechanobiol.
,
1
(
3
), pp.
211
218
.
17.
Gow
,
B. S.
, and
Vaishnav
,
R. N.
, 1975, “
A Microindentation Technique to Measure Rheological Properties of the Vascular Intima
,”
ASME J. Appl. Mech.
0021-8936,
38
(
2
), pp.
344
350
.
18.
Hori
,
R. Y.
, and
Mockros
,
L. F.
, 1976, “
Indentation Tests of Human Articular Cartilage
,”
J. Biomech.
0021-9290,
9
(
4
), pp.
259
268
.
19.
Gow
,
B. S.
,
Castle
,
W. D.
, and
Legg
,
M. J.
, 1983, “
An Improved Microindentation Technique to Measure Changes in Properties of Arterial Intima During Atherogenesis
,”
J. Biomech.
0021-9290,
16
(
6
), pp.
451
458
.
20.
Zheng
,
Y. P.
, and
Mak
,
A. F.
, 1996, “
An Ultrasound Indentation System for Biomechanical Properties Assessment of Soft Tissues In-Vivo
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
(
9
), pp.
912
918
.
21.
Lundkvist
,
A.
,
Lilleodden
,
E.
,
Siekhaus
,
W.
,
Kinney
,
J.
,
Pruitt
,
L.
, and
Balooch
,
M.
, 1997, “
Viscoelastic Properties of Healthy Human Artery Measured in Saline Solution by AFM-Based Indentation Technique
,”
Thin Films: Stresses and Mechanical Properties VI
,
W. W.
Gerberich
,
H.
Gao
,
J. E.
Sundgren
, and
S. P.
Baker
, eds.,
Materials Research Society
,
Boston
, Vol.
436
, pp.
353
358
.
22.
Han
,
L.
,
Noble
,
J. A.
, and
Burcher
,
M.
, 2003, “
A Novel Ultrasound Indentation System for Measuring Biomechanical Properties of in Vivo Soft Tissue
,”
Ultrasound Med. Biol.
0301-5629,
29
(
6
), pp.
813
823
.
23.
Ebenstein
,
D. M.
, and
Pruitt
,
L. A.
, 2004, “
Nanoindentation of Soft Hydrated Materials for Application to Vascular Tissues
,”
J. Biomed. Mater. A.
,
69
(
2
), pp.
222
232
.
24.
Hertz
,
H.
, 1881, “
Uber Die Berührung Fester Elastischer Körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
25.
Green
,
A. E.
, and
Zerna
,
W.
, 1968,
Theoretical Elasticity
,
Oxford University Press
,
London
.
26.
Humphrey
,
J. D.
,
Halperin
,
H. R.
, and
Yin
,
F. C. P.
, 1991, “
Small Indentation Superimposed on a Finite Equibiaxial Stretch: Implications for Cardiac Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
1108
1111
.
27.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Hermann
,
G.
, and
Mockros
,
L. F.
, 1972, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
0021-9290,
5
(
5
), pp.
541
551
.
28.
Matthewson
,
M. J.
, 1981, “
Axi-symmetric Contact on Thin Compliant Coatings
,”
J. Mech. Phys. Solids
0022-5096,
29
(
2
), pp.
89
113
.
29.
Costa
,
K. D.
, and
Yin
,
F. C. P.
, 1999, “
Analysis of indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
462
471
.
30.
Aoki
,
T.
,
Ohashi
,
T.
,
Matsumoto
,
T.
, and
Sato
,
M.
, 1997, “
The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues
,”
Ann. Biomed. Eng.
0090-6964,
25
(
3
), pp.
581
587
.
31.
Ohashi
,
T.
,
Matsumoto
,
T.
,
Abe
,
H.
, and
Sato
,
M.
, 1997, “
Intramural Distribution of Local Elastic Moduli in Bovine Thoracic Aorta Measured by Pipette Aspiration Method
,”
Cell. Eng.
,
2
(
1
), pp.
12
18
.
32.
Ohashi
,
T.
,
Abe
,
H.
,
Matsumoto
,
T.
, and
Sato
,
M.
, 2005, “
Pipette Aspiration Technique for the Measurement of Nonlinear and Anisotropic Mechanical Properties of Blood Vessel Walls Under Biaxial Stretch
,”
J. Biomech.
0021-9290,
38
(
11
), pp.
2248
2256
.
33.
Bischoff
,
J. E.
, 2004, “
Static Indentation of Anisotropic Biomaterials Using Axially Asymmetric Indenters—A Computational Study
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
4
), pp.
498
505
.
34.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study Of Material Models
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
1
48
.
35.
van Oijen
,
C. H. G. A.
, 2003, “
Mechanics and Design of Fiber-Reinforced Vascular Prostheses
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven;
36.
Driessen
,
N. J. B.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2005, “
A Structural Constitutive Model for Collagenous Cardiovascular Tissues Incorporating the Angular Fiber Distribution
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
494
503
.
37.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
38.
Sauren
,
A. A. H. J.
, 1981, “
The Mechanical Behavior of the Aortic Valve
,” Ph.D. thesis, Technische Hogeschool Eindhoven, Eindhoven;
39.
Sutton
,
M.
,
Wolters
,
W.
,
Peters
, III,
W.
,
Ranson
,
W.
, and
McNeill
,
S.
, 1983, “
Determination of Displacements Using an Improved Digital Correlation Method
,”
Image Vis. Comput.
0262-8856,
1
(
3
), pp.
133
139
.
40.
Segal
,
A.
, 1984,
SEPRAN User Manual, Standard Problems and Programmer’s Guide
,
Ingenieursbureau SEPRA
,
Leidschendam, the Netherlands
.
41.
Hendriks
,
M. A. N.
,
Oomens
,
C. W. J.
,
Jans
,
H. W. J.
,
Janssen
,
J. D.
, and
Kok
,
J. J.
, 1990, “
A Numerical Experimental Approach for the Mechanical Characterisation of Composites and Biological Tissues by Means of Non-Linear Filtering
,”
Proceedings of the 9th International Conference on Experimental Mechanics
,
V.
Askegaard
, ed., pp.
552
561
.
42.
Oomens
,
C. W. J.
,
Hendriks
,
M. A. N.
,
van Ratingen
,
M. R.
,
Janssen
,
J. D.
, and
Kok
,
J. J.
, 1993, “
A Numerical-Experimental Method for a Mechanical Characterization of Biological Materials
,”
J. Biomech.
0021-9290,
26
(
4/5
), pp.
617
621
.
43.
Meuwissen
,
M. H. H.
, 1998, “
An Inverse Method for the Mechanical Characterisation of Metals
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven;
44.
Meuwissen
,
M. H. H.
,
Oomens
,
C. W. J.
,
Baaijens
,
F. P. T.
,
Petterson
,
R.
, and
Janssen
,
J. D.
, 1998, “
Determination of Elasto-plastic Properties of Aluminium Using a Mixed Numerical-Experimental Method
,”
J. Mater. Process. Technol.
0924-0136,
75
(
1–3
), pp.
204
211
.
45.
Bard
,
Y.
, 1974,
Nonlinear Parameter Estimation
,
Academic Press
,
London
.
46.
Li
,
J.
,
Luo
,
X. Y.
, and
Kuang
,
Z. B.
, 2001, “
A Nonlinear Anisotropic Model for Porcine Heart Valves
,”
J. Biomech.
0021-9290,
34
(
10
), pp.
1279
1289
.
47.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
0021-9290,
16
(
1
), pp.
1
12
.
48.
Vesely
,
I.
, and
Noseworthy
,
R.
, 1992, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Leaflets
,”
J. Biomech.
0021-9290,
25
(
1
), pp.
101
113
.
49.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
3
), pp.
333
339
.
50.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Constitutive Model for Planar Collagenous Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
280
287
.
51.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
, pp.
582
592
.
52.
Zulliger
,
M. A.
,
Fridez
,
P.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2004, “
A Strain Energy Function for Arteries Accounting for Wall Composition and Structure
,”
J. Biomech.
0021-9290,
37
(
7
), pp.
989
1000
.
53.
Zioupos
,
P.
, and
Barbenel
,
J. C.
, 1994, “
II. A Structure Based Model for the Anisotropic Material Behavior of the Tissue
,”
Biomaterials
0142-9612,
15
(
5
), pp.
374
382
.
You do not currently have access to this content.