Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5× symmetric static scale model of the human larynx (divergence angle of 10deg, minimal diameter of 0.04cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.

1.
Scherer
,
R. C.
,
Shinwari
,
D.
,
DeWitt
,
K.
,
Zhang
,
C.
,
Kucinschi
,
B.
, and
Afjeh
,
A.
, 2001, “
Intraglottal Pressure Profiles for a Symmetric and Oblique Glottis With a Divergence Angle of 10Degrees
,”
J. Acoust. Soc. Am.
0001-4966,
109
, pp.
1616
1630
.
2.
Scherer
,
R. C.
,
Shinwari
,
D.
,
De Witt
,
K. J.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
, 2002, “
Intraglottal Pressure Profiles for a Symmetric and Oblique Glottis With a Uniform Duct
,”
J. Acoust. Soc. Am.
0001-4966,
112
(
4
), pp.
1253
1256
.
3.
Shinwari
,
D.
,
Scherer
,
R. C.
,
De Witt
,
K.
, and
Afjeh
,
A.
, 2003, “
Flow Visualization and Pressure Distributions in a Model of the Glottis With a Symmetric and Oblique Divergent Angle of 10Degrees
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
1
), pp.
487
497
.
4.
van den Berg
,
J.
, 1955, “
On the Role of Laryngeal Ventricle in Voice Production
,”
Folia Phoniatr.
0015-5705,
7
, pp.
57
69
.
5.
Scherer
,
R. C.
,
Titze
,
I. R.
, and
Curtis
,
J. F.
, 1983, “
Pressure-Flow Relationships in Two Models of the Larynx Having Rectangular Glottal Shapes
,”
J. Acoust. Soc. Am.
0001-4966,
73
, pp.
668
676
.
6.
Binh
,
N.
, and
Gauffin
,
J.
, 1983, “
Aerodynamic Measurements in an Enlarged Static Laryngeal Model
,” STL-QPSR 2-3∕1983, pp.
36
60
.
7.
Ikeda
,
T.
,
Matsuzaki
,
Y.
, and
Aomatsu
,
T.
, 2001, “
A Numerical Analysis of Phonation Using a Two-Dimensional Flexible Channel Model of the Vocal Folds
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
571
579
.
8.
Shadle
,
C. H.
,
Barney
,
A. M.
, and
Thomas
,
D. W.
, 1991, “
An Investigation Into the Acoustics and Aerodynamics of the Larynx
,”
Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms
,
J.
Gauffin
and
B.
Hammarberg
, eds.,
Singular Publishing Group, Inc.
,
San Diego
, pp.
73
82
.
9.
Pelorson
,
X.
,
Liljencrants
,
J.
, and
Kroeger
,
B.
, 1995, “
On the Aeroacoustics of Voiced Sound Production
,”
Proceedings of the 15th International Congress on Acoustics
, Trondheim, Norway, June 26–30.
10.
Miller
,
J. A.
,
Pereira
,
J. C.
, and
Thomas
,
D. W.
, 1988, “
Fluid Flow Through the Larynx Channel
,”
J. Sound Vib.
0022-460X,
121
, pp.
277
290
.
11.
Iijima
,
H.
,
Miki
,
N.
, and
Nagai
,
N.
, 1992, “
Glottal Impedance Based on a Finite Element Analysis of Two-Dimensional Unsteady Viscous Flow in a Static Glottis
,”
IEEE Trans. Signal Process.
1053-587X,
40
(
9
), pp.
2125
2135
.
12.
Iijima
,
H.
,
Miki
,
N.
, and
Nagai
,
N.
, 1988, “
Viscous Flow Analyses of the Glottal Model Using a Finite Element Method
,”
J. Acoust. Soc. Am.
0001-4966 (to be published).
13.
Hirschberg
,
A.
,
Pelorson
,
X.
,
Hofmans
,
G. C. J.
,
van Hassel
,
R. R.
, and
Wijnands
,
A. P. J.
, 1996, “
Starting Transient of the Flow Through an In-Vitro Model of the Vocal Folds
,”
Vocal Fold Physiology, Controlling Complexity and Chaos
,
P. J.
Davis
and
N. H.
Fletcher
, eds.,
Singular Publishing Group, Inc.
,
San Diego
, pp.
31
46
.
14.
Agarwal
,
M.
, 2004, “
The False Vocal Folds and Their Effect on Translaryngeal Airflow Resistance
,” Ph.D. dissertation, Bowling Green State University, OH.
15.
Zhang
,
C.
,
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
, 2002, “
Computational Aeroacoustics of Phonation, Part II: Effects of Flow Parameters and Ventricular Folds
,”
J. Acoust. Soc. Am.
0001-4966,
112
(
5
), pp.
2147
2154
.
16.
Hofmans
,
G. C. J.
,
Groot
,
G.
,
Ranucci
,
M.
,
Graziani
,
G.
, and
Hirschberg
,
A.
, 2003, “
Unsteady Flow Through In-Vitro Models of the Glottis
,”
J. Acoust. Soc. Am.
0001-4966,
113
(
3
), pp.
1658
1675
.
17.
Hofmans
,
G. C. J.
, 1998, “
Vortex Sound in Confined Flows
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
18.
Flanagan
,
J. L.
, 1965,
Speech Analysis, Synthesis, and Perception
,
Springer-Verlag
,
Berlin
.
19.
Mongeau
,
L.
,
Franchek
,
N.
,
Coker
,
C. H.
, and
Kubli
,
R. A.
, 1997, “
Characteristics of a Pulsating Jet Through a Small Modulated Orifice, With Application to Voice Production
,”
J. Acoust. Soc. Am.
0001-4966,
102
(
2
), pp.
1121
1133
.
20.
Zhang
,
Z.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
, 2002, “
Experimental Verification of the Quasi-Steady Approximation for Aerodynamic Sound Generation by Pulsating Jets in Tubes
,”
J. Acoust. Soc. Am.
0001-4966,
112
, pp.
1652
1663
.
21.
Berke
,
G. S.
,
Moore
,
D. M.
,
Mondewitz
,
P. A.
,
Hanson
,
D. G.
, and
Gerratt
,
B. R.
, 1989, “
A Preliminary Study of Particle Velocity During Phonation in an In-Vivo Canine Model
,”
J. Voice
0892-1997,
3∕4
, pp.
306
313
.
22.
Alipour
,
F.
,
Scherer
,
R. C.
, and
Patel
,
V. C.
, 1995, “
An Experimental Study of Pulsatile Flow in Canine Larynges
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
577
581
.
23.
Alipour
,
F.
,
Scherer
,
R.
, and
Knowles
,
J.
, 1996, “
Velocity Distributions in Glottal Models
,”
J. Voice
0892-1997,
10
(
1
), pp.
50
58
.
24.
Alipour
,
F.
, and
Scherer
,
R. C.
, 1995, “
Pulsatile Airflow During Phonation: An Excised Larynx Model
,”
J. Acoust. Soc. Am.
0001-4966,
97
, pp.
1241
1248
.
25.
Liljencrants
,
J.
, 1991, “
Numerical Simulations of Glottal Flow
,”
Vocal Fold Physiology: Acoustic, Perceptual, and Physiological Aspects of Voice Mechanisms
,
J.
Gauffin
and
B.
Hammarberg
, eds.,
Singular Publishing Group, Inc.
,
San Diego
, pp.
99
104
.
26.
Pelorson
,
R. L.
,
Hirschberg
,
A.
,
van Hassel
,
R. R.
, and
Wijnands
,
A. P. J.
, 1994, “
Theoretical and Experimental Study of Quasisteady-Flow Separation Within the Glottis During Phonation. Application to a Modified Two-Mass Model
,”
J. Acoust. Soc. Am.
0001-4966,
96
(
6
), pp.
3416
3431
.
27.
Barney
,
A.
,
Shadle
,
C. H.
, and
Davies
,
P. O. A. L.
, 1999, “
Fluid Flow in a Dynamic Mechanical Model of the Vocal Folds and Tract. I. Measurements and Theory
,”
J. Acoust. Soc. Am.
0001-4966,
105
(
1
), pp.
444
455
.
28.
Shadle
,
C. H.
,
Barney
,
A.
, and
Davies
,
P. O. A. L.
, 1999, “
Fluid Flow in a Dynamic Mechanical Model of the Vocal Folds and Tract. II. Implications for Speech Production Studies
,”
J. Acoust. Soc. Am.
0001-4966,
105
(
1
), pp.
456
466
.
29.
McGowan
,
R. S.
, 1988, “
An Aeroacoustic Approach to Phonation
,”
J. Acoust. Soc. Am.
0001-4966,
83
, pp.
696
704
.
30.
Zhao
,
W.
,
Zhang
,
C.
,
Frankel
,
S. H.
, and
Mongeau
,
L.
, 2002, “
Computational Aeroacoustics of Phonation, Part I: Computational Methods and Sound Generation Mechanisms
,”
J. Acoust. Soc. Am.
0001-4966,
112
(
5
), pp.
2134
2146
.
31.
Agarwal
,
M.
,
Scherer
,
R. C.
, and
Hollien
,
H.
, 2003, “
The False Vocal Folds: Shape and Size in Frontal View During Phonation Based on Laminagraphic Tracings
,”
J. Voice
0892-1997,
17
(
2
), pp.
97
113
.
32.
Davies
,
P. O. A. L.
, 1981, “
Flow-Acoustic Coupling in Ducts
,”
J. Sound Vib.
0022-460X,
77
(
2
), pp.
191
209
.
33.
Cherdron
,
W.
,
Durst
,
F.
, and
Whitelaw
,
J. H.
, 1978, “
Asymmetric Flows and Instabilities in Symmetric Ducts With Sudden Expansions
,”
J. Fluid Mech.
0022-1120,
84
(
1
), pp.
13
31
.
34.
Tsui
,
Y.-Y.
, and
Wang
,
C.-K.
, 1995, “
Calculation of Laminar Separated Flow in Symmetric Two-Dimensional Diffusers
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
612
616
.
35.
Streeter
,
V. L.
, 1966,
Fluid Mechanics
, 4th ed.,
McGraw-Hill
,
New York
, pp.
446
450
.
36.
Panton
,
R. L.
, 1996,
Incompressible Flow
, 2nd ed.,
Wiley Interscience
,
New York
, pp.
709
711
.
37.
Goldstein
,
M. D.
, 1976,
Aeroacoustics
,
McGraw-Hill International Book Company
,
New York
.
39.
Zhang
,
Z.
,
Mongeau
,
L.
,
Frankel
,
S.
,
Thomson
,
S.
, and
Park
,
J.
, 2004, “
Sound Generation by Steady-Flow Through Glottis-Shaped Orifices
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
3
), pp.
1720
1728
.
40.
Komoro
,
T.
, and
Murakami
,
S.
, 2000, “
Noise Generation by Jet Impinging on the Orifice Edge Inside a Pipe
,”
Proceedings of the 6th International Symposium on Fluid Control, Measurement and Visualization, FLUCOME 2000
, Sherbrooke(Qc), Canada.
41.
Howe
,
M.
, 2003,
Theory of Vortex Sound
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.