To investigate the structural mechanisms by which elevation of the intraendothelial cAMP levels abolishes or attenuates the transient increase in microvascular permeability by vascular endothelial growth factor (VEGF), we examined cAMP effect on VEGF-induced hyperpermeability to small solute sodium fluorescein (Stokes radius=0.45nm) Psodiumfluorescein, intermediate-sized solute α-lactalbumin (Stokes radius=2.01nm) Pα-lactalbumin, and large solute albumin (BSA, Stokes radius=3.5nm) PBSA on individually perfused microvessels of frog mesenteries. After 20min pretreatment of 2mM cAMP analog, 8-bromo-cAMP, the initial increase by 1nM VEGF was completely abolished in Psodiumfluorescein (from a peak increase of 2.6±0.37 times control with VEGF alone to 0.96±0.07 times control with VEGF and cAMP), in Pα-lactalbumin (from a peak increase of 2.7±0.33 times control with VEGF alone to 0.76±0.07 times control with VEGF and cAMP), and in PBSA (from a peak increase of 6.5±1.0 times control with VEGF alone to 0.97±0.08 times control with VEGF and cAMP). Based on these measured data, the prediction from our mathematical models suggested that the increase in the number of tight junction strands in the cleft between endothelial cells forming the microvessel wall is one of the mechanisms for the abolishment of VEGF-induced hyperpermeability by cAMP.

1.
Folkman
,
J.
, and
Klagsburn
,
M.
, 1987, “
Angiogenic Factors
,”
Science
0036-8075,
235
, pp.
442
447
.
2.
Bates
,
D. O.
, 1997, “
The Chronic Effect of Vascular Endothelial Growth Factor on Individually Perfused Frog Mesenteric Microvessels
,”
J. Physiol. (London)
0022-3751,
513
(
1
), pp.
225
233
.
3.
Bates
,
D. O.
, and
Curry
,
F. E.
, 1996, “
Vascular Endothelial Growth Factor Increases Hydraulic Conductivity of Isolated Perfused Microvessels
,”
Am. J. Physiol.
0002-9513,
271
(
40
), pp.
H2520
2528
.
4.
Bates
,
D. O.
, and
Harper
,
S.
, 2003, “
Regulation of Microvascular Permeability by Vascular Endothelial Growth Factors
,”
Vasc. Pharmacol.
,
39
, pp.
225
237
.
5.
Bates
,
D. O.
,
Lodwick
,
D.
, and
Williams
,
B.
, 1999, “
Vascular Endothelial Growth Factor and Microvascular Permeability
,”
Microcirculation (Philadelphia)
1073-9688,
6
, pp.
83
89
.
6.
Collins
,
P. D.
,
Connolly
,
D. T.
, and
Williams
,
T. J.
, 1993, “
Characterization of the Increase in Vascular Permeability Induced by Vascular Permeability Factor in Vivo
,”
Br. J. Pharmacol.
0007-1188,
109
, pp.
195
199
.
7.
Fu
,
B. M.
, and
Shen
,
S.
, 2003, “
Structural Mechanisms of Acute VEGF Effect on Microvessel Permeability
,”
Am. J. Physiol.
0002-9513,
284
, pp.
H2124
2135
.
8.
Michel
,
C. C.
, and
Curry
,
F. E.
, 1999, “
Microvascular Permeability
,”
Physiol. Rev.
0031-9333,
79
(
3
), pp.
703
761
.
9.
Wang
,
W.
,
Dentler
,
W. L.
, and
Borchardt
,
R. T.
, 2001, “
VEGF Increases BMEC Monolayer Permeability by Affecting Occludin Expression and Tight Junction Assembly
,”
Am. J. Physiol.
0002-9513,
280
, pp.
H434
H440
.
10.
Wu
,
H. M.
,
Huang
,
Q.
,
Yuan
,
Y.
, and
Grange
,
H. J.
, 1996, “
VEGF Induces NO-Dependent Hyperpermeability in Coronary Venules
,”
Am. J. Physiol.
0002-9513,
271
, pp.
H2735
H2739
.
11.
Dvorak
,
H. F.
, 2002, “
Vascular Permeability Factor/vascular Endothelial Growth Factor: A Critical Cytokine in Tumor Angiogenesis and a Potential Target for Diagnosis and Therapy
,”
J. Clin. Oncol.
0732-183X,
20
, pp.
4368
4380
.
12.
Jain
,
R. K.
, 2001, “
Normalizing Tumor Vasculature With Anti-Angiogenic Therapy: A New Paradigm for Combination Therapy
,”
Nat. Med. (N.Y.)
1078-8956,
7
, pp.
987
989
.
13.
Margolin
,
K.
, 2002, “
Inhibition of Vascular Endothelial Growth Factor in the Treatment of Solid Tumors
,”
Oncol. Rep.
1021-335X,
4
, pp.
20
28
.
14.
McDonald
,
D. M.
, and
Baluk
,
P.
, 2002, “
Significance of Blood Vessel Leakiness in Cancer
,”
Cancer Res.
0008-5472,
62
, pp.
5381
5385
.
15.
van Nieuw Amerongen
,
G. P.
, and
van Hinsbergh
,
V. W. M.
, 2003, “
Targets for Pharmacological Intervention of Endothelial Hyperpermeability and Barrier Function
,”
Vascular Pharmacol
,
39
, pp.
257
272
.
16.
Yu
,
Y.
,
Khan
,
J.
,
Khanna
,
C.
,
Helman
,
L.
,
Meltzer
,
P. S.
, and
Merlino
,
G.
, 2004, “
Expression Profiling Identifies the Cytoskeletal Organizer Ezrin and the Developmental Homeoprotein Six-1 as Key Metastatic Regulators
,”
Nat. Med. (N.Y.)
1078-8956,
10
(
2
), pp.
175
181
.
17.
Seeger
,
W.
,
Hansen
,
T.
,
Rossig
,
R.
,
Schmehl
,
T.
,
Schutte
,
H.
,
Kramer
,
H. J.
,
Walmrath
,
D.
,
Weissmann
,
N.
,
Grimminger
,
F.
, and
Suttorp
,
N.
, 1995, “
Hydrogen Peroxide-Induced Increase in Lung Endothelial and Epithelial Permeability-Effect of Adenylate Cyclase Stimulation and Phosphodiesterase Inhibition
,”
Microvasc. Res.
0026-2862,
50
, pp.
1
17
.
18.
Sheldon
,
R.
,
Moy
,
A.
,
Lindsley
,
K.
,
Shasby
,
S.
, and
Shasby
,
D. M.
, 1993, “
Role of Myosin Light-Chain Phosphorylation in Endothelial Cell Retraction
,”
Am. J. Physiol.
0002-9513,
265
(
9
), pp.
L606
612
.
19.
Garcia
,
J. G. N.
,
Davis
,
H. W.
, and
Pattierson
,
C. E.
, 1995, “
Regulation of Endothelial Cell Gap Formation and Barrier Dysfunction: Role of Myosin Light Chain Phosphorylation
,”
J. Cell Physiol.
0021-9541,
163
, pp.
510
522
.
20.
Suttorp
,
N.
,
Weber
,
U.
,
Welsch
,
T.
, and
Schudt
,
C.
, 1993, “
Role of Phosphodiesterases in the Regulation of Endothelial Permeability In Vitro
,”
J. Clin. Invest.
0021-9738,
91
, pp.
1421
1428
.
21.
He
,
P.
, and
Curry
,
F. E.
, 1993, “
Differential Actions of cAMP on Endothelial [Ca2+]i and Permeability in Microvessels Exposed to ATP
,”
Am. J. Physiol.
0002-9513,
265
(
34
), pp.
H1019
1023
.
22.
Furuse
,
M.
,
Hirase
,
T.
,
Itoh
,
M.
,
Nagafuchi
,
A.
,
Yonemura
,
S.
, and
Tsukita
,
S.
, 1993, “
Occludin—A Movel Integral Membrane-protein Localizing at Tight Junctions
,”
J. Cell Biol.
0021-9525,
123
, pp.
177
1788
.
23.
Anderson
,
J. M.
, and
Van Itallie
,
C. M.
, 1995, “
Tight Junctions and the Molecular Basis for Regulation of Paracellular Permeability
,”
Am. J. Physiol.
0002-9513,
269
, pp.
G467
G475
.
24.
Wong
,
V.
, and
Gumbiner
,
B. M.
, 1997, “
A Synthetic Peptide Corresponding to the Extracellular Domain of Occludin Perturbs the Tight Junction Permeability Barrier
,”
J. Cell Biol.
0021-9525,
136
, pp.
139
409
.
25.
Chen
,
Y.
,
Merzdorf
,
C.
,
Paul
,
D. L.
, and
Goodenough
,
D. A.
, 1997, “
COOH Terminus of Occludin is Required for Tight Junction Barrier Function in Early Embryos
,”
J. Cell Biol.
0021-9525,
138
, pp.
891
899
.
26.
Adamson
,
R. H.
,
Liu
,
B.
,
Nilson Fry
,
G.
,
Rubin
,
L. L.
, and
Curry
,
F. E.
, 1998, “
Microvascular Permeability and Number of Tight Junctions are Modulated by cAMP
,”
Am. J. Physiol.
0002-9513,
274
(
43
), pp.
H1885
H1894
.
27.
Dye
,
J. F.
,
Leach
,
L.
,
Clark
,
P.
, and
Firth
,
J. A.
, 2001, “
Cyclic AMP and Acidic Fibroblast Growth Factor Have Opposing Effects on Tight and Adherens Junctions in Microvascular Endothelial Cells In Vitro
,”
Microvasc. Res.
0026-2862,
62
, pp.
94
113
.
28.
Langeler
,
E. G.
, and
van Hinsbergh
,
V. W.
, 1991, “
Norepinephrine and Iloprost Improve Barrier Function of Human Endothelial Cell Monolayers: Role of cAMP
,”
Am. J. Physiol.
0002-9513,
260
, pp.
C1052
C1059
.
29.
Moy
,
A. B.
,
Bodmer
,
J. E.
,
Blackwell
,
K.
,
Shasby
,
S.
, and
Shasby
,
D. M.
, 1998, “
CAMP Protects Endothelial Barrier Function Independent of Inhibiting MLC20-Dependent Tension Development
,”
Am. J. Physiol.
0002-9513,
274
, pp.
L1024
1029
1998).
30.
Stelzner
,
T. J.
,
Weil
,
J. V.
, and
O’brien
,
R.
, 1989, “
Role of Cyclic Adenosine Monophosphate in the Induction of Endothelial Barrier Properties
,”
J. Cell Physiol.
0021-9541,
139
, pp.
157
166
.
31.
Fu
,
B. M.
,
Adamson
,
R. H.
, and
Curry
,
F. E.
, 1998, “
Test of Two Pathway Model for Small Solute Exchange Across the Capillary Wall
,”
Am. J. Physiol.
0002-9513,
274
(
43
), pp.
H2062
H2073
.
32.
Fu
,
B. M.
, and
Chen
,
B.
, 2003, “
A model for the Modulation of Microvessel Permeability by Junction Strands
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
620
627
.
33.
McDonald
,
D. M.
,
Thurston
,
G.
, and
Baluk
,
P.
, 1999, “
Endothelial Gaps as Sites for Plasma Leakage in Inflammation
,”
Microcirculation (Philadelphia)
1073-9688,
6
(
1
), pp.
7
22
.
34.
Feng
,
D.
,
Nagy
,
J. A.
,
Payne
,
K.
,
Hammel
,
I.
,
Dvorak
,
H. F.
, and
Dvorak
,
A. M.
, 1999, “
Pathways of Macromolecular Extravasation Across Microvascular Endothelium in Response to VPF/VEGF and Other Vasoactive Mediators
,”
Microcirculation (Philadelphia)
1073-9688,
6
(
1
), pp.
23
44
.
35.
Qu
,
H.
,
J. A.
Nagy
,
D. R.
Senger
,
H. F.
Dvorak
, and
A. M.
Dvorak
, 1995, “
Ultrastructural Localization of Vascular Permeability Factor/Vascular Endothelial Growth Factor (VPF/VEGF) to the Albumin Plasma Membrane and Vesiculovacuolar Organelles of Tumor Microvascular Endothelium
,”
J. Histochem. Cytochem.
0022-1554,
43
, pp.
381
389
.
36.
Michel
,
C. C.
, and
Neal
,
C. R.
, 1999, “
Openings Through Endothelial Cells Associated with Increased Microvascular Permeability
,”
Microcirculation (Philadelphia)
1073-9688,
6
(
1
), pp.
45
62
.
37.
Roberts
,
W. G.
, and
Palade
,
G. E.
, 1995, “
Increased Microvascular Permeability and Endothelial Fenestration Induced by Vascular Endothelial Growth Factor
,”
J. Cell. Sci.
0021-9533,
108
, pp.
2369
2379
.
38.
Fu
,
B. M.
,
Tsay
,
R.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
, 1994, “
A Junction-Orifice-Fiber Entrance Layer Model for Capillary Permeability: Application to Frog Mesenteric Capillaries
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
502
513
.
39.
Adamson
,
R. H.
,
Huxley
,
V. H.
, and
Curry
,
F. E.
, 1988, “
Single Capillary Permeability to Proteins Having Similar Size but Different Charge
,”
Am. J. Physiol.
0002-9513,
254
, pp.
H304
H312
.
40.
Davis
,
M. J.
, and
Gore
,
R. W.
, 1987, “
Double-Barrel Pipette System for Microinjection
,”
Am. J. Physiol.
0002-9513,
253
, pp.
H965
967
.
41.
McKay
,
M. K.
, and
Huxley
,
V. H.
, 1995, “
ANP Increases Capillary Permeability to Protein Independent of Perfusate Protein Composition
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
268
, pp.
H1139
1148
.
42.
Barnard
,
J. W.
,
Seibert
,
A. F.
,
Prasad
,
V. R.
,
Smart
,
D. A.
,
Strada
,
S. J.
,
Taylor
,
A. E.
, and
Thompson
,
W. J.
, 1994, “
Reversal of Pulmonary Capillary Ischemia-Reperfusion Injury by Rolipram, a cAMP Phosphodiesterase Inhibitor
,”
J. Appl. Physiol.
8750-7587,
77
(
2
), pp.
774
781
.
43.
He
,
P.
,
M.
Zeng
, and
Curry
,
F. E.
, 2000, “
Dominant Role of Camp in Regulation of Microvessel Permeability
,”
Am. J. Physiol.
0002-9513,
278
, pp.
H1124
1133
.
44.
Anderson
,
J. M.
,
Stevenson
,
B. R.
,
Jesaitis
,
L. A.
,
Goodenough
,
D. A.
, and
Mooseker
,
M. S.
, 1988, “
Characterisation of ZO-1, a Protein Component of the Tight Junction From Mouse Liver and Madin-darby Canine Kidney Cells
,”
J. Cell Biol.
0021-9525,
106
, pp.
1141
1149
.
45.
Duffey
,
M. E.
,
Hainau
,
B.
,
Ho
,
S.
, and
Bentzel
,
C. J.
, 1981, “
Regulation of Epithelial Tight Junction Permeability by Cyclic AMP
,”
Nature (London)
0028-0836,
294
, pp.
451
453
.
46.
Furuse
,
M.
,
Sasaki
,
H.
,
Fujimoto
K.
, and
Tsukita
S.
, 1998, “
A Single Gene Product Claudin-1 or 2, Reconstitutes Tight Junction Strands and Recruits Occludin in Fibroblasts
,”
J. Cell Biol.
0021-9525,
143
, pp.
391
401
.
47.
Itoh
,
M.
,
Nagafuchi
,
A.
,
Moroi
,
S.
, and
Tsukita
,
S.
, 1997, “
Involvement of ZO-1 in Cadherin-Based Cell Adhesion Through its Direct Binding to β-Catenin and Actin Filaments
,”
J. Cell Biol.
0021-9525,
138
, pp.
181
192
.
48.
Matter
,
K.
, and
Balda
,
M. S.
, 1999, “
Occludin and the Function of Tight Junctions
,”
Int. Rev. Cytol.
0074-7696,
186
, pp.
117
146
.
49.
Rubin
,
L. G.
,
Hall
,
D. E.
,
Porter
,
S.
,
Barbu
,
K.
,
Cannon
,
C.
,
Horner
,
H. C.
,
Janatpour
,
M.
,
Liaw
,
C. W.
,
Manning
,
K.
,
Morales
,
J.
,
Tanner
,
L. I.
,
Tomaselli
,
K. J.
, and
Bard
,
F.
, 1991, “
A Cell Culture Model of the Blood-Brain Barrier
,”
J. Cell Biol.
0021-9525,
115
, pp.
1725
1735
.
You do not currently have access to this content.