There is little information on bone morphology as it relates to shoulder activities. This study investigated how loads corresponding to functional shoulder activities affect the trabecular architecture of the glenoid. Two different protocols were used. Protocol 1 investigated the material and morphological characteristics of the glenoid by analyzing digitized trabecular bone images obtained from 12 cadaver scapula specimens. Protocol 2 used a finite element analysis (FEA) to compute the principal stress trajectories acting within the glenoid. The principal stresses were derived for five loading conditions, which represent typical functional shoulder activities. The study showed that shoulder activity involved in carrying a light load makes the greatest contribution to the trabecular architecture compared with other shoulder activities considered in this study (p<0.05). With all of the activities considered in this study, the lateral region, particularly in the anterior and posterior portions, showed greater deviation and greater sensitivity to variation under loading conditions than did the other regions (p<0.05). These results suggest that owing to the extra sensitivity of the anterior and posterior parts of the lateral region, these regions may be more informative in the analysis of the trabecular architecture following shoulder musculoskeletal injuries. These results may provide essential design information for shoulder prostheses and contribute to an understanding of morphological changes resulting from injury.

1.
Simon
,
S. R.
, 1994, “
Orthopaedic Basic Science
,” American Academy of Orthopaedic Surgeons.
2.
Melton
,
L. J.
, 1988,
Epidemiology of Fracture, in Osteoporosis Etiology, Diagnosis, and Management
,
Raven Press
,
New York
.
3.
Glaser
,
D. L.
, and
Kaplan
,
F. S.
, 1997, “
Osteoporosis: Definition and Clinical Presentation
,”
Spine
0362-2436,
22
, p.
12S
.
4.
Cowin
,
S. C.
, 2001,
Bone Mechanics Handbook
,
CRC Press LLC
,
Buca Raton
.
5.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissue
,
Springer-Verlag
,
New York
, pp.
510
513
.
6.
Mow
,
V. C.
, and
Hayes
,
W. C.
, 1997,
Basic Orthopaedic Biomechanics: Biomechanics of Cortical and Trabecular Bone
,
Lippincott-Raven
,
Philadelphia
, pp.
69
111
.
7.
Tsubota
,
K.
,
Adachi
,
T.
, and
Tomita
,
Y.
, 2002, “
Functional Adaptation of Cancellous Bone in Human Proximal Femur Predicted by Trabecular Surface Remodeling Simulation Toward Uniform Stress State
,”
J. Biomech.
0021-9290,
35
, pp.
1541
1551
.
8.
Miller
,
Z.
,
Fuchs
,
M. B.
, and
Arcan
,
M.
, 2002, “
Trabecular Bone Adaptation With an Orthotropic Material Model
,”
J. Biomech.
0021-9290,
35
, pp.
247
256
.
9.
Huiskes
,
R.
,
Ruimerman
,
R.
,
Van Lenthe
,
G. H.
, and
Janssen
,
J. D.
, 2000, “
Effect of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature (London)
0028-0836,
405
, pp.
704
706
.
10.
Van Rietbergen
,
B.
,
Muller
,
R.
,
Ulrich
,
D.
,
Ruegsegger
,
P.
, and
Huiskes
,
R.
, 1999, “
Tissue Stresses and Strain in Trabeculae of a Canine Proximal Femur can be Quantified From Computer Reconstructions
,”
J. Biomech.
0021-9290,
32
, pp.
165
173
.
11.
Cheal
,
E. J.
,
Snyder
,
B. D.
,
Nunamaker
,
D. M.
, and
Hayes
,
W. C.
, 1987, “
Trabecular Bone Remodeling Around Smooth and Porous Implants in an Equine Patellar Model
,”
J. Biomech.
0021-9290,
20
, p.
1121
.
12.
Goldstein
,
S. A.
,
Matthews
,
L. S.
,
Kuhn
,
J. L.
, and
Hollister
,
S. J.
, 1991, “
Trabecular Bone Remodeling: An Experimental Model
,”
J. Biomech.
0021-9290,
24
, p.
135
.
13.
Guldberg
,
R. E.
,
Richards
,
M.
,
Caldwell
,
N. J.
,
Kuelske
,
C. L.
, and
Goldstein
,
S. A.
, 1997, “
Trabecular Bone Adaptation to Variations in Porous-Coated Implant Topology
,”
J. Biomech.
0021-9290,
30
, p.
147
.
14.
Anglin
,
C.
,
Tolhurst
,
P.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
, 1999, “
Glenoid Cancellous Bone Strength and Modulus
,”
J. Biomech.
0021-9290,
32
, pp.
1091
1098
.
15.
Frich
,
L. H.
,
Jensen
,
N. C.
,
Odgaard
,
A.
,
Pedersen
,
C. M.
,
Sjbjerg
,
J. O.
, and
Dalstra
,
M.
, 1997, “
Bone Strength and Material Properties of the Glenoid
,”
J. Shoulder Elbow Surg.
1058-2746,
6
, pp.
97
104
.
16.
Frich
,
L. H.
,
Odgaard
,
A.
, and
Dalstra
,
M.
, 1998, “
Glenoid Bone Architecture
,”
J. Shoulder Elbow Surg.
1058-2746,
7
, pp.
356
361
.
17.
Mansat
,
P.
,
Barea
,
C.
,
Hobatho
,
M. C.
,
Darmana
,
R.
, and
Mansat
,
M.
, 1998, “
Anatomic Variation of the Mechanical Properties of the Glenoid
,”
J. Shoulder Elbow Surg.
1058-2746,
7
, pp.
109
115
.
18.
McPherson
,
E. J.
,
Friedman
,
R. J.
,
An
,
Y. H.
,
Chokesi
,
R.
, and
Dooley
,
R. L.
, 1997, “
Anthropometric Study of Normal Glenohumeral Relationships
,”
J. Shoulder Elbow Surg.
1058-2746,
6
, pp.
105
112
.
19.
Odgaard
,
A.
, 1997, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone (N.Y.)
8756-3282,
20
(
4
), pp.
315
328
.
20.
Cowin
,
S. C.
, 1985, “
The Relationship Between the Elasticity Tensor and the Fabric Tensor
,”
Mech. Mater.
0167-6636,
4
, pp.
137
147
.
21.
Kabel
,
J.
,
van Rietbergen
,
B.
,
Odgaard
,
A.
, and
Huiskes
,
R.
, 1999, “
Constitutive Relationship of Fabric, Density, and Elastic Properties in Cancellous Bone Architecture
,”
Bone (N.Y.)
8756-3282,
25
, pp.
481
486
.
22.
Odgaard
,
A.
,
Jensen
,
E. B.
, and
Gundersen
,
J. G.
, 1990, “
Estimation of Structural Anisotropy Based on Volume Orientation: A New Concept
,”
J. Microsc.
0022-2720,
157
, pp.
149
162
.
23.
Odgaard
,
A.
,
Kabel
,
J.
,
van Rietbergen
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
, 1997, “
Fabric and Elastic Principal Directions of Cancellous Bone are Closely Related
,”
J. Biomech.
0021-9290,
30
, pp.
487
495
.
24.
Turner
,
C. H.
, and
Cowin
,
S. C.
, 1987, “
On Dependence of the Elastic Constants of an Anisotropic Porous Material Upon Porosity and Fabric
,”
J. Mater. Sci.
0022-2461,
22
, pp.
3178
3184
.
25.
Turner
,
C. H.
,
Cowin
,
S. C.
,
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Rice
,
J.
, 1990, “
The Fabric Dependence of the Orthotropic Elastic Constants of Cancellous Bone
,”
J. Biomech.
0021-9290,
23
, pp.
549
561
.
26.
Whitehouse
,
W. J.
, 1974, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
0022-2720,
101
, pp.
153
168
.
27.
Lacroix
,
D.
,
Murphy
,
L. A.
, and
Prendergast
,
P. J.
, 2000, “
Three-Dimensional Finite Element Analysis of Glenoid Replacement Prostheses: A Comparison of Keeled and Pegged Anchorage Systems
,”
J. Biomech. Eng.
0148-0731,
122
, p.
430
.
28.
Stone
,
K. D.
,
Grabowski
,
J. J.
,
Cofield
,
R. H.
,
Morrey
,
B. F.
, and
An
,
K. N.
, 1999, “
Stress Analyses of Glenoid Components in Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
1058-2746,
8
, p.
151
.
29.
Cattaneo
,
P. M.
,
Dalstra
,
M.
, and
Frich
,
L. H.
, 2001, “
A Three-Dimensional Finite Element Model From Computed Tomography Data: A Semi-Automated Method
,” in
Proceedings of the Institution of Mechanical Engineers [H]
, pp.
215
,
203
.
30.
Anglin
,
C.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
, 2000, “
Glenohumeral Contact Forces
,” in
Proceedings of the Institution of Mechanical Engineers
, pp.
214
,
637
644
.
31.
Van Der Helm
,
F. C. T.
, 1994, “
Analysis of the Kinematic and Dynamic Behavior of the Shoulder Mechanism
,”
J. Biomech.
0021-9290,
27
, pp.
527
550
.
32.
Karlsson
,
D.
, and
Peterson
,
B.
, 1992, “
Towards a Model for Force Predictions in the Human Shoulder
,”
J. Biomech.
0021-9290,
25
, pp.
189
199
33.
Poppen
,
N. K.
, and
Walker
,
P. S.
, 1978, “
Forces at the Glenohumeral Joint in Abduction
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
135
, pp.
165
170
.
34.
Seireg
,
A.
, and
Arvikar
,
R.
, 1989,
Biomechanical Analysis Musculoskeletal Structure for Medicine and Sport: Modeling of the Musculoskeletal System for the Upper and Lower Extremities
,
Hemisphere
,
New York
.
You do not currently have access to this content.