A physiologically realistic arterio-venous countercurrent vessel network model consisting of ten branching vessel generations, where the diameter of each generation of vessels is smaller than the previous ones, has been created and used to determine the thermal significance of different vessel generations by investigating their ability to exchange thermal energy with the tissue. The temperature distribution in the 3D network (8178 vessels; diameters from 10 to 1000μm) is obtained by solving the conduction equation in the tissue and the convective energy equation with a specified Nusselt number in the vessels. The sensitivity of the exchange of energy between the vessels and the tissue to changes in the network parameters is studied for two cases; a high temperature thermal therapy case when tissue is heated by a uniformly distributed source term and the network cools the tissue, and a hypothermia related case, when tissue is cooled from the surface and the blood heats the tissue. Results show that first, the relative roles of vessels of different diameters are strongly determined by the inlet temperatures to those vessels (e.g., as affected by changing mass flow rates), and the surrounding tissue temperature, but not by their diameter. Second, changes in the following do not significantly affect the heat transfer rates between tissue and vessels; (a) the ratio of arterial to venous vessel diameter, (b) the diameter reduction coefficient (the ratio of diameters of successive vessel generations), and (c) the Nusselt number. Third, both arteries and veins play significant roles in the exchange of energy between tissue and vessels, with arteries playing a more significant role. These results suggest that the determination of which diameter vessels are thermally important should be performed on a case-by-case, problem dependent basis. And, that in the development of site-specific vessel network models, reasonable predictions of the relative roles of different vessel diameters can be obtained by using any physiologically realistic values of Nusselt number and the diameter reduction coefficient.

1.
Chen
,
M. M.
, and
Holmes
,
K. R.
, 1980, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
137
150
.
2.
Kotte
,
A.
,
Leeuwen
,
G. V.
,
Bree
,
J. D.
,
Koijk
,
J. V. D.
,
Crezee
,
H.
, and
Lagendijk
,
J.
, 1996, “
A Description of Discrete Vessel Segments in Thermal Modeling of Tissues
,”
Phys. Med. Biol.
0031-9155,
41
, pp.
865
884
.
3.
Leeuwen
,
G. M. J. V.
,
Kotte
,
A. N. T. J.
,
Bree
,
J. D.
,
Koijk
,
J. V. D.
,
Crezee
,
H.
, and
Lagendijk
,
J. J. W.
, 1997, “
Accuracy of Geometric Modeling of Heat Transfer from Tissue to Blood Vessels
,”
Phys. Med. Biol.
0031-9155,
42
, pp.
1451
1460
.
4.
Zhu
,
L.
,
Lemons
,
D. E.
, and
Weinbaum
,
S.
, 1996, “
Microvascular Thermal Equilibration in Rat Cremaster Muscle
,”
Ann. Biomed. Eng.
0090-6964,
24
, pp.
109
123
.
5.
Nichols
,
W. W.
, and
O'Rourke
,
M. F.
, 1998,
McDonald's Blood Flow in Arteries - Theoretical, Experimental and Clinical Principles
,
4th ed.
,
Oxford University Press
, New York.
6.
Chato
,
J. C.
, 1980, “
Heat Transfer to Blood Vessels
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
110
118
.
7.
Lemons
,
D. E.
,
Chien
,
S.
,
Crawshaw
,
L. I.
,
Weinbaum
,
S.
, and
Jiji
,
L. M.
,
, 1987, “
Significance of Vessel Size and Type in Vascular Heat Transfer
,”
Am. J. Physiol.
0002-9513,
253
, pp.
R128
R135
.
8.
Brinck
,
H.
, and
Werner
,
J.
, 1994, “
Estimation of the Thermal Effect of Blood Flow in a Branching Countercurrent Network Using a Three Dimensional Vascular Model
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
324
330
.
9.
He
,
Q.
,
Zhu
,
L.
,
Lemonds
,
D. E.
, and
Weinbaum
,
S.
, 2002, “
Experimental Measurements of the Temperature Variation Along Artery-Vein Pairs from 200 to 1000μm Diameter in Rat Hind Limb
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
656
661
.
10.
Baish
,
J. W.
, 1994, “
Formulation of a Statistical Model of Heat Transfer in Perfused Tissue
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
521
527
.
11.
Leeuwen
,
G. M. J. V.
,
Kotte
,
A. N. T. J.
,
Raaymakers
,
B. W.
, and
Lagendijk
,
J. J. W.
, 2000, “
Temperature Simulations in Tissue with a Realistic Computer Generated Vessel Network
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1035
1049
.
12.
Huang
,
H. W.
,
Chen
,
Z. P.
, and
Roemer
,
R. B.
, 1996, “
A Countercurrent Vascular Network Model of Heat Transfer in Tissues
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
120
129
.
13.
Myrhage
,
R.
, and
Eriksson
,
E.
, 1980, “
Vascular Arrangements in Hind Limb of the Cat
,”
J. Anat.
0021-8782,
131
, No. 1, pp.
1
17
.
14.
Popel
,
A. S.
, 1987, “
Network Models of Peripheral Circulation
,”
Handbook of Bioengineering
,
R.
Skalak
and
S.
Chien
, eds.,
McGraw-Hill
, New York.
15.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
16.
Sastry
,
S. S.
, 1995,
Introductory Methods of Numerical Analysis
,
Prentice-Hall of India Private Limited
, New Delhi.
17.
Kotte
,
A. N. T. J.
,
Leeuwen
,
G. M. J. V.
, and
Lagendijk
,
J. J. W.
, 1999, “
Modeling of Thermal Impact of a Discrete Vessel Tree
,”
Phys. Med. Biol.
0031-9155,
44
, pp.
57
74
.
18.
Song
,
C. W.
,
Lokshina
,
A.
,
Rhee
,
J. G.
,
Patten
,
M.
, and
Levitt
,
S. H.
, 1984, “
Implication of Blood Flow in Hyperthermic Treatment of Tumors
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-31
(
1
), pp.
9
16
.
19.
He
,
Q.
,
Zhu
,
L.
, and
Weinbaum
,
S.
, 2003, “
Effect of Blood Flow on Thermal Equilibration and Venous Rewarming
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
659
666
.
20.
Cousins
,
A. K.
, 1997, “
On the Nusselt Number in Heat Transfer Between Multiple Parallel Blood Vessels
,”
J. Biomech. Eng.
0148-0731,
119
, pp.
127
129
.
21.
Diller
,
K. R.
, 1998, “
Biotransport: Heat and Mass Transfer in Living Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
858
, pp.
18
19
.
22.
Gordon
,
R. G.
,
Roemer
,
R. B.
, and
Horvath
,
S. M.
, 1976, “
A Mathematical Model of the Human Temperature Regulatory System – Transient Cold Exposure Response
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-23
(
6
), pp.
434
444
.
23.
Piotrkowicz
,
N.
,
Zielinski
,
J.
,
Jonska
,
J.
,
Roszkowska
,
K.
,
Debicki
,
P.
, and
Lyczek
,
J.
, 2003, “
Intracavitary 500KHZ Hyperthermia Treatment of Patients with Endometrial and Cervical Cancer–Preliminary Clinical and Pathological Results
,”
Ginekol. Pol.
0017-0011,
74
(
9
), pp.
824
829
.
24.
Pedersen
,
N. P.
, and
Blessing
,
W. W.
, 2001, “
Cutaneous Vasoconstriction Contributes to Hyperthermia Induced by 3,4-Methylenedioxymethamphetamine (Ecstasy) in Conscious Rabbits
,”
J. Neurosci.
0270-6474,
21
(
21
), pp.
8648
8654
.
25.
Roemer
,
R. B.
, 1999, “
Engineering Aspects of Hyperthermia
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
347
376
.
26.
Zhu
,
L.
, and
Diao
,
C.
, 2001, “
Theoretical Simulation of Temperature Distribution in the Brain During Mild Hypothermia Treatment for Brain Surgery
,”
Med. Biol. Eng. Comput.
0140-0118,
39
, pp.
681
687
.
27.
Dae
,
M. W.
,
Gao
,
D. W.
,
Ursell
,
P. C.
,
Stillson
,
C. A.
, and
Sessler
,
D. I.
, 2003, “
Safety and Efficacy of Endovascular Cooling and Rewarming for Induction of Hypothermia in Human Sized Pigs
,”
Stroke
0039-2499,
34
, pp.
734
738
.
28.
Yanamoto
,
H.
,
Nagata
,
I.
,
Nakahara
,
I.
,
Tohni
,
N.
,
Zhang
,
Z.
, and
Kikuchi
,
H.
, 1999, “
Combination of Intraischemic and Postischemic Hypothermia Provides Potent and Persistent Neuroprotection Against Temporary Focal Ischemia in Rats
,”
Stroke
0039-2499,
30
, pp.
2720
2726
.
29.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
, New York.
30.
Wackym
,
P. A.
, and
Blackwell
,
K. E.
, 1994, “
Malignant Hyperthermia in the Otology Patient: the UCLA Experience
,”
Am. J. Otol.
0192-9763,
15
(
3
), pp.
371
375
.
31.
Dubrow
,
T. J.
,
Wackym
,
P. A.
,
Abdul-Rasool
,
I. H.
, and
Moore
,
T. C.
, 1989, “
Malignant Hyperthermia: Experience in the Prospective Management of Eight Children
,”
J. Pediatr. Surg.
0022-3468,
24
(
2
), pp.
163
166
.
32.
Fiege
,
M.
,
Wappler
,
F.
,
Weisshorn
,
R.
,
Gerbershagen
,
M. U.
,
Menge
,
M.
, and
Schulte
,
Am Esch J.
, 2003, “
Induction of Malignant Hyperthermia in Susceptible Swine by 3,4-Methylenedioxymethamphetamine (“Ecstasy”)
,”
Anesthesiology
0003-3022,
99
(
5
), pp.
1132
1136
.
You do not currently have access to this content.