Background: While it is established that mechanical heart valves (MHVs) damage blood elements during leakage and forward flow, the role in thrombus formation of platelet activation by high shear flow geometries remains unclear. In this study, continuously recalcified blood was used to measure the effects of blood flow through orifices, which model MHVs, on the generation of procoagulant thrombin and the resulting formation of thrombus. The contribution of platelets to this process was also assessed. Method of Approach: 200, 400, 800, and 1200μm orifices simulated the hinge region of bileaflet MHVs, and 200, 400, and 800μm wide slits modeled the centerline where the two leaflets meet when the MHV is closed. To assess activation of coagulation during blood recirculation, samples were withdrawn over 0-47min and the plasmas assayed for thrombin-antithrombin-III (TAT) levels. Model geometries were also inspected visually. Results: The 200 and 400μm round orifices induced significant TAT generation and thrombosis over the study interval. In contrast, thrombin generation by the slit orifices, and by the 800 and 1200μm round orifices, was negligible. In additional experiments with nonrecalcified or platelet-depleted blood, TAT levels were markedly reduced versus the studies with fully anticoagulated whole blood (p<0.05). Conclusions: Using the present method, a significant increase in TAT concentration was found for 200 and 400μm orifices, but not 800 and 1200μm orifices, indicating that these flow geometries exhibit a critical threshold for activation of coagulation and resulting formation of thrombus. Markedly lower TAT levels were produced in studies with platelet-depleted blood, documenting a key role for platelets in the thrombotic process.

1.
Ellis
,
J. T.
,
Travis
,
B. R.
, and
Yoganathan
,
A. P.
, 2000, “
An In Vitro Study of the Hinge and Near-Field Forward Flow Dynamics of the St. Jude Medical Regent Bileaflet Mechanical Heart Valve
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
524
532
.
2.
Ellis
,
J. T.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 1996, “
Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic Parallel Bileaflet Mechanical Valve With Clear Housing
,”
J. Heart Valve Dis.
0966-8519,
5
, pp.
591
599
.
3.
Steegers
,
A.
,
Paul
,
R.
,
Reul
,
H.
, and
Rau
,
G.
, 1999, “
Leakage Flow at Mechanical Heart Valve Prostheses: Improved Washout or Increased Blood Damage
,”
J. Heart Valve Dis.
0966-8519,
8
, pp.
312
323
.
4.
Travis
,
B. R.
, 2001, “
The Effects of Bileaflet Prosthesis Pivot Geometry on Turbulence and Blood Damage Potential
,” Ph.D. thesis, Georgia Institute of Technology.
5.
Gross
,
J. M.
,
Shu
,
M. C. S.
,
Dai
,
F. F.
,
Ellis
,
J.
, and
Yoganathan
,
A. P.
, 1996, “
A Microstructural Flow Analysis Within a Bileaflet Mechanical Heart Valve Hinge
,”
J. Heart Valve Dis.
0966-8519,
5
, pp.
581
590
.
6.
Yoganathan
,
A. P.
,
Wick
,
T. M.
, and
Reul
,
H.
, 1992, “
Influence of Flow Characteristics of Prosthetic Valves on Thrombus Formation
,”
Thrombosis, Embolism and Bleeding
,
E. G.
Butchart
and
E.
Bodnar
, eds.,
ICR
, United Kingdom, pp.
123
148
.
7.
Ruggeri
,
Z. M.
, 1993, “
Mechanisms of Shear-Induced Platelet Adhesion and Aggregation
,”
Thromb. Haemostasis
0340-6245,
70
, pp.
119
123
.
8.
Ruggeri
,
Z. M.
, 1997, “
Mechanisms Initiating Platelet Thrombus Formation
,”
Thromb. Haemostasis
0340-6245,
78
, pp.
611
616
.
9.
Goto
,
S.
,
Ikeda
,
Y.
,
Saldivar
,
E.
, and
Ruggeri
,
Z. M.
, 1998, “
Distinct Mechanisms of Platelet Aggregation as a Consequence of Different Shearing Flow Conditions
,”
J. Clin. Invest.
0021-9738,
101
, pp.
479
486
.
10.
Ikeda
,
Y.
,
Handa
,
M.
,
Kawano
,
K.
,
Kamata
,
T.
,
Murata
,
M.
,
Araki
,
Y.
,
Anbo
,
H.
,
Kawai
,
K.
,
Itagaki
,
I.
,
Sakai
,
K.
, and
Ruggeri
,
Z. M.
, 1991, “
The Role of von Willebrand Factor and Fibrinogen on Platelet Aggregation Under Varying Shear Stress
,”
J. Clin. Invest.
0021-9738,
87
, pp.
1231
1240
.
11.
Slack
,
S. M.
,
Cui
,
Y.
, and
Turitto
,
V. T.
, 1993, “
The Effects of Flow on Blood Coagulation and Thrombosis
,”
Thromb. Haemostasis
0340-6245,
70
, pp.
129
134
.
12.
Shankaran
,
H.
,
Alexandridis
,
P.
, and
Neelamegham
,
S.
, 2003, “
Aspects of Hydrodynamic Shear Regulating Shear-Induced Platelet Activation and Self-Association of von Willebrand Factor in Suspension
,”
Blood
0006-4971,
10
, pp.
2637
2645
.
13.
Mazzacato
,
M.
,
Pradella
,
P.
,
Cozzi
,
M. R.
,
De Marco
,
L.
, and
Ruggeri
,
Z. M.
, 2002, “
Sequential Cytoplasmic Calcium Signals in a 2-Stage Platelet Activation Process Induced by the Glycoprotein Iba Mechanoreceptor
,”
Blood
0006-4971,
100
, pp.
2793
2800
.
14.
Hanson
,
S. R.
, and
Harker
,
L. A.
, 1988, “
Interruption of Acute Platelet-Dependent Thrombosis by the Synthetic Antithrombin D-phenylalanyl-L-prolyl-L-arginyl Chloromethyl Ketone
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
85
, pp.
3184
3188
.
15.
Heras
,
M.
,
Chesebro
,
J. H.
,
Webster
,
M. W.
,
Mruk
,
J. S.
,
Frill
,
D. E.
,
Penny
,
W. J.
,
Badimon
,
L.
, and
Fuster
,
V.
, 1990, “
Hirudin, Heparin, and Placebo During Deep Arterial Injury in the Pig. The In Vivo Role of Thrombin in Platelet-Mediated Thrombosis
,”
Circulation
0009-7322,
82
, pp.
1476
1484
.
16.
Yoganathan
,
A. P.
, and
Travis
,
B. R.
, 2000, “
Fluid Dynamics of Prosthetic Valves
,”
The Practice of Clinical Echocardiography
,
2nd ed.
, Catherine M. Otto, ed.,
WB Saunders
, Philadelphia, PA.
17.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposition on Artificial Surfaces
,”
Arterioscler. Thromb.
1049-8834,
13
, pp.
1806
1813
.
18.
Chang
,
B.-C.
,
Lim
,
S. H.
,
Kim
,
D. K.
,
Seo
,
J. Y.
,
Cho
,
S. Y.
,
Shim
,
W. H.
,
Chung
,
N.
,
Kim
,
S. S.
, and
Cho
,
B. K.
, 2001, “
Long-Term Results With St. Jude Medical and CarboMedics Prosthetic Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
10
, pp.
185
195
.
19.
Sparrow
,
E. M.
, and
Lin
,
S. H.
, 1964, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids
0031-9171,
7
, pp.
338
347
.
20.
Hayat
,
M. A.
, 2000,
Principles and Techniques of Electron Microscopy: Biological Applications
,
Cambridge University Press
, Cambridge.
21.
Zhang
,
J.-N.
,
Bergeron
,
A. L.
,
Yu
,
Q.
,
Sun
,
C.
,
McIntire
,
L. V.
,
Lopez
,
J. A.
, and
Dong
,
J.-F.
, 2002, “
Platelet Aggregation and Activation Under Complex Patterns of Shear Stress
,”
Thromb. Haemostasis
0340-6245,
88
, pp.
817
821
.
22.
Nesbitt
,
W. S.
,
Giuliano
,
S.
,
Kulkarni
,
S.
,
Dopheide
,
S. M.
,
Harper
,
I. S.
, and
Jackson
,
S. P.
, 2003, “
Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth
,”
J. Cell Biol.
0021-9525,
160
, pp.
1151
1161
.
23.
Zhang
,
J.-N.
,
Bergeron
,
A. L.
,
Yu
,
Q.
,
Sun
,
C.
,
McBride
,
L.
,
Bray
,
P. F.
, and
Dong
,
J.-F.
, 2003, “
Duration of Exposure to High Fluid Shear Stress Is Critical in Shear-Induced Platelet Activation-Aggregation
,”
Thromb. Haemostasis
0340-6245,
90
, pp.
672
678
.
24.
Goel
,
M. S.
, and
Diamond
,
S. L.
, 2002, “
Adhesion of Normal Erythrocytes at Depressed Venous Shear Rates to Activated Neutrophils, Activated Platelets, and Fibrin Polymerized From Plasma
,”
Blood
0006-4971,
100
, pp.
3797
3803
.
25.
Balasubramanian
,
V.
,
Vele
,
O.
, and
Nemerson
,
Y.
, 2002, “
Local Shear Conditions and Platelet Aggregates Regulate the Incorporation and Activity of Circulating Tissue Factor in Ex-Vivo Thrombi
,”
Thromb. Haemostasis
0340-6245,
88
, pp.
822
826
.
You do not currently have access to this content.