The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability, and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as hyperelastic warping for the measurement of local strains in the left ventricle from clinical cine-magnetic resonance imaging (MRI) image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastolic cine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from hyperelastic warping showed good agreement with those of the forward solution (R2=0.67 stretch, R2=0.76 circumferential strain, R2=0.75 radial strain, and R2=0.70 in-plane shear). The technique had low sensitivity to changes in material parameters (ΔR2=0.023 fiber stretch, ΔR2=0.020 circumferential strain, ΔR2=0.005 radial strain, and ΔR2=0.0125 shear strain with little or no change in rms error), with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to a signal-to-noise ratio (SNR) of 4.0 (ΔR2=0.032 fiber stretch, ΔR2=0.023 circumferential strain, ΔR2=0.04 radial strain, and ΔR2=0.0211 shear strain with little or no increase in rms error). This study demonstrates that warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

1.
D’Hooge
,
J.
,
Konofagou
,
E.
,
Jamal
,
F.
,
Heimdal
,
A.
,
Barrios
,
L.
,
Bijnens
,
B.
,
Thoen
,
J.
,
Van de Werf
,
F.
,
Sutherland
,
G.
, and
Suetens
,
P.
, 2002, “
Two-dimensional ultrasonic strain rate measurement of the human heart in vivo
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
49
, pp.
281
286
.
2.
Weidemann
,
F.
,
Kowalski
,
M.
,
D’Hooge
,
J.
,
Bijnens
,
B.
, and
Sutherland
,
G. R.
, 2001, “
Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function
,”
Basic Res. Cardiol.
0300-8428,
96
, pp.
595
605
.
3.
Plein
,
S.
,
Smith
,
W. H.
,
Ridgway
,
J. P.
,
Kassner
,
A.
,
Beacock
,
D. J.
,
Bloomer
,
T. N.
, and
Sivananthan
,
M. U.
, 2001, “
Qualitative and quantitative analysis of regional left ventricular wall dynamics using real-time magnetic resonance imaging: Comparison with conventional breath-hold gradient echo acquisition in volunteers and patients
,”
J. Magn. Reson Imaging
1053-1807,
14
, pp.
23
30
.
4.
Lahiri
,
A.
,
Rodrigues
,
E. A.
,
Carboni
,
G. P.
, and
Raftery
,
E. B.
, 1990, “
Effects of chronic treatment with calcium antagonists on left ventricular diastolic function in stable angina and heart failure
,”
Circulation
0009-7322,
81
(
suppl III
), pp.
130
138
.
5.
McVeigh
,
E. R.
, and
Zerhouni
,
E. A.
, 1991, “
Noninvasive measurement of transmural gradients in myocardial strain with MR imaging
,”
Radiology
0033-8419,
180
, pp.
677
683
.
6.
Takayama
,
Y.
,
Costa
,
K. D.
, and
Covell
,
J. W.
, 2002, “
Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
282
, pp.
H1510
H1520
.
7.
Sinusas
,
A. J.
,
Papdemetris
,
X.
,
Constable
,
R. T.
,
Dione
,
D. P.
,
Slade
,
M. D.
,
Shi
,
P.
, and
Duncan
,
J. S.
, 2001, “
Quantification of 3-D regional myocardial deformation: Shape-based analysis of magnetic resonance images
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
281
, pp.
H698
H714
.
8.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
, 1993, “
Mechanics of active contraction in cardiac muscle: Part I-constitutive relations for fiber stress that describe deactivation
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
72
81
.
9.
Tseng
,
W. Y.
, 2000, “
Magnetic resonance imaging assessment of left ventricular function and wall motion
,”
J. Formos Med. Assoc.
0929-6646,
99
, pp.
593
602
.
10.
Weiss
,
J. A.
,
Rabbitt
,
R. D.
, and
Bowden
,
A. E.
, 1998, “
Incorporation of medical image data in finite element models to track strain in soft tissues
,”
Proc. SPIE
0277-786X,
3254
, pp.
477
484
.
11.
Veress
,
A. I.
,
Phatak
,
N.
, and
Weiss
,
J. A.
, 2004, “
Deformable image registration with hyperelastic warping
,” in
The Handbook of Medical Image Analysis: Segmentation and Registration Models
,
Marcel Dekker
, Inc., NY.
12.
Rabbitt
,
R. D.
,
Weiss
,
J. A.
,
Christensen
,
G. E.
, and
Miller
,
M. I.
, 1995, “
Mapping of hyperelastic deformable templates using the finite element method
,”
Proc. SPIE
0277-786X,
2573
, pp.
252
265
.
13.
Veress
,
A. I.
,
Weiss
,
J. A.
,
Gullberg
,
G. T.
,
Vince
,
D. G.
, and
Rabbitt
,
R. D.
, 2003, “
Strain measurement in coronary arteries using intravascular ultrasound and deformable images
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
734
741
.
14.
Christensen
,
G. E.
,
Rabbitt
,
R. D.
, and
Miller
,
M. I.
, 1996, “
Deformable templates using large deformation kinematics
,”
IEEE Trans. Image Process.
1057-7149,
5
, pp.
1435
1447
.
15.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundations of Elasticity
,
Dover
, Mineola, NY.
16.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
, NY.
17.
Bathe
,
K.-J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
, Englewood Cliffs, NJ.
18.
Bathe
,
K.-J.
, 1982,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
, Englewood Cliffs, NJ.
19.
Matthies
,
H.
, and
Strang
,
G.
, 1979, “
The solution of nonlinear finite element equations
,”
Int. J. Numer. Methods Eng.
0029-5981,
14
, pp.
1613
1626
.
20.
Powell
,
M. J. D.
, 1969,
A Method for Nonlinear Constraints in Minimization Problems in Optimization
,
Academic Press
, NY.
21.
Berne
,
R. M.
, and
Levy
,
M. N.
, 1998,
Physiology
,
Mosby Year Book
, St. Louis, MO.
22.
Spencer
,
A.
, 1980,
Continuum Mechanics
,
Longman
, NY.
23.
Weiss
,
J.
,
Maker
,
B.
, and
Govindjee
,
S.
, 1996, “
Finite element implementation of incompressible transversely isotropic hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
24.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
, 1990, “
Determination of a constitutive relation for passive myocardium: II. Parameter estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
340
346
.
25.
Maker
,
B. N.
,
Ferencz
,
R. M.
, and
Hallquist
,
J. O.
, 1990, “
NIKE3D: A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics
,” Lawrence Livermore National Laboratory Technical Report No. UCRL-MA #105268.
26.
Huttenlocher
,
D. P.
,
Klanderman
,
G. A.
, and
Rucklidge
,
W. J.
, 1993, “
Comparing images using the Hausdorff distance
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
15
, pp.
850
863
.
27.
Jiang
,
H.
,
Holton
,
K. S.
, and
Robb
,
R. A.
, 1992, “
Image registration of multimodality 3-D medical images by chamfer matching
,”
Proc. SPIE
0277-786X,
1660
, pp.
356
366
.
28.
Bland
,
J. M.
, and
Altman
,
D. G.
, 1986, “
Statistical methods for assessing agreement between two methods of clinical measurement
,”
Lancet
0140-6736,
1
, pp.
307
310
.
29.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
, 1990, “
Determination of a constitutive relation for passive myocardium: I. A new functional form
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
333
339
.
30.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
, 1992,
Digital Image Processing
,
Addison-Wesley
, Reading, MA.
31.
Omens
,
J. H.
,
Farr
,
D. D.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1996, “
Comparison of two techniques for measuring two-dimensional strain in rat left ventricles
,”
Am. J. Physiol.
0002-9513,
271
, pp.
H1256
H1261
.
32.
Guccione
,
J. M.
, and
McCulloch
,
A. D.
, 1993, “
Mechanics of active contraction in cardiac muscle: Part II-constitutive relations for fiber stress that describe deactivation
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
82
90
.
33.
Tseng
,
W. Y.
,
Reese
,
T. G.
,
Weisskoff
,
R. M.
,
Brady
,
T. J.
, and
Wedeen
,
V. J.
, 2000, “
Myocardial fiber shortening in humans: Initial results of MR imaging
,”
Radiology
0033-8419,
216
, pp.
128
139
.
34.
MacGowan
,
G. A.
,
Shapiro
,
E. P.
,
Azhari
,
H.
,
Siu
,
C. O.
,
Hees
,
P. S.
,
Hutchins
,
G. M.
,
Weiss
,
J. L.
, and
Rademakers
,
F. E.
, 1997, “
Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy
,”
Circulation
0009-7322,
15
, pp.
535
541
.
35.
Schvartzman
,
P. R.
,
Fuchs
,
F. D.
,
Mello
,
A. G.
,
Coli
,
M.
,
Schvartzman
,
M.
, and
Moreira
,
L. B.
, 2000, “
Normal values of echocardiographic measurements. A population-based study
,”
Arq. Bras. Cardiol.
0066-782X,
75
, pp.
111
114
.
36.
Miller
,
M. I.
,
Trouvé
,
A.
, and
Younes
,
L.
, 2002, “
On the metrics and Euler-Lagrange equations of computational anatomy
,”
Annu. Rev. Biomed. Eng.
1523-9829,
4
, pp.
375
405
.
37.
Davatzikos
,
C.
, 1996, “
Spatial normalization of 3D brain images using deformable models
,”
J. Comput. Assist. Tomogr.
0363-8715,
20
, pp.
656
665
.
38.
Bajcsy
,
R.
,
Lieberson
,
R.
, and
Reivich
,
M.
, 1983, “
A computerized system for the elastic matching of deformed radiographic images to idealized atlas images
,”
J. Comput. Assist. Tomogr.
0363-8715,
7
, pp.
618
625
.
39.
Moshfeghi
,
M.
, 1994, “
Three-dimensional elastic matching of volumes
,”
IEEE Trans. Image Process.
1057-7149,
3
, pp.
128
138
.
40.
Gee
,
J.
,
Reivich
,
M.
, and
Bajcsy
,
R.
, 1993, “
Elastically deforming 3D atlas to match anatomical brain images
,”
J. Comput. Assist. Tomogr.
0363-8715,
17
, pp.
225
236
.
41.
Klein
,
G. J.
,
Reutter
,
B. W.
, and
Huesman
,
R. H.
, 1997, “
Non-rigid summing of gated PET via optical flow
,”
IEEE Trans. Nucl. Sci.
0018-9499,
44
, pp.
1509
1512
.
42.
Gilchrist
,
C. L.
,
Xia
,
J. Q.
,
Setton
,
L. A.
, and
Hsu
,
E. W.
, 2004, “
High-resolution determination of soft tissue deformations using MRI and first-order texture correlation
,”
IEEE Trans. Med. Imaging
0278-0062,
23
, pp.
546
553
.
43.
Usyk
,
T. P.
,
Mazhari
,
R.
, and
McCulloch
,
A. D.
, 2000, “
Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle
,”
J. Elast.
0374-3535,
61
, pp.
143
164
.
44.
Omens
,
J. H.
,
May
,
K. D.
, and
McCulloch
,
A. D.
, 1991, “
Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle
,”
Am. J. Physiol.
0002-9513,
261
, pp.
H918
H928
.
45.
Costa
,
K. D.
,
Holmes
,
J. W.
, and
McCulloch
,
A. D.
, 2001, “
Modeling cardiac mechanical properties in three dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
1233
1250
.
46.
Moulton
,
M. J.
,
Creswell
,
L. L.
,
Downing
,
S. W.
,
Actis
,
R. L.
,
Szabo
,
B. A.
,
Vannier
,
M. W.
, and
Pasque
,
M. K.
, 1996, “
Spline surface interpolation for calculating 3-D ventricular strains from MRI tissue tagging
,”
Am. J. Physiol.
0002-9513,
270
, pp.
H281
H297
.
47.
Germano
,
G.
,
Kiat
,
H.
,
Kavanagh
,
P. B.
,
Moriel
,
M.
,
Mazzanti
,
M.
,
Su
,
H. T.
,
Van Train
,
K. F.
, and
Berman
,
D. S.
, 1995, “
Automatic quantification of ejection fraction from gated myocardial perfusion SPECT
,”
J. Nucl. Med.
0161-5505,
36
, pp.
2138
2147
.
48.
Veress
,
A. I.
,
Weiss
,
J. A.
,
Klein
,
G. J.
, and
Gullberg
,
G. T.
, 2002, “
Quantification of 3D left ventricular deformation using hyperelastic warping: Comparisons between MRI and PET imaging
,”
Comput. Cardiol.
0276-6574,
pp.
709
712
.
49.
Picano
,
E.
,
Lattanzi
,
F.
,
Orlandini
,
A.
,
Marini
,
C.
, and
L’Abbate
,
A.
, 1991, “
Stress echocardiography and the human factor: The importance of being expert
,”
J. Am. Coll. Cardiol.
0735-1097,
17
, pp.
666
669
.
50.
Cohn
,
J. N.
,
Johnson
,
G.
,
Ziesche
,
S.
,
Cobb
,
F.
,
Francis
,
G.
,
Tristani
,
F.
,
Smith
,
R.
,
Dunkman
,
W. B.
,
Loeb
,
H.
, and
Wong
,
M.
, 1991, “
A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure
,”
N. Engl. J. Med.
0028-4793,
325
, pp.
303
310
.
51.
Zerhouni
,
E. A.
,
Parish
,
D. M.
,
Rogers
,
W. J.
,
Yang
,
A.
, and
Shapiro
,
E. P.
, 1988, “
Human heart: Tagging with MR imaging—A method for noninvasive assessment of myocardial motion
,”
Radiology
0033-8419,
169
, pp.
59
63
.
52.
Axel
,
L.
,
Goncalves
,
R. C.
, and
Bloomgarden
,
D.
, 1992, “
Regional heart wall motion: Two-dimensional analysis and functional imaging with MR imaging
,”
Radiology
0033-8419,
183
, pp.
745
750
.
53.
McVeigh
,
E. R.
, and
Atalar
,
E.
, 1992, “
Cardiac tagging with breath-hold cine MRI
,”
Magn. Reson. Imaging
0730-725X,
28
, pp.
318
327
.
54.
Ungacta
,
F. F.
,
Davila-Roman
,
V. G.
,
Moulton
,
M. J.
,
Cupps
,
B. P.
,
Moustakidis
,
P.
,
Fishman
,
D. S.
,
Actis
,
R.
,
Szabo
,
B. A.
,
Li
,
D.
,
Kouchoukos
,
N. T.
, and
Pasque
,
M. K.
, 1998, “
MRI-radiofrequency tissue tagging in patients with aortic insufficiency before and after operation
,”
Ann. Thorac. Surg.
0003-4975,
65
, pp.
943
950
.
55.
Buchalter
,
M. B.
,
Weiss
,
J. L.
,
Rogers
,
W. J.
,
Zerhouni
,
E. A.
,
Weisfeldt
,
M. L.
,
Beyar
,
R.
, and
Shapiro
,
E. P.
, 1990, “
Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging
,”
Circulation
0009-7322,
81
, pp.
1236
1244
.
56.
Ozturk
,
C.
, and
McVeigh
,
E. R.
, 2000, “
Four-dimensional B-spline based motion analysis of tagged MR images: Introduction and in vivo validation
,”
Phys. Med. Biol.
0031-9155,
45
, pp.
1683
1702
.
57.
Atalar
,
E.
, and
McVeigh
,
E.
, 1994, “
Optimum tag thickness for the measurement of motion by MRI
,”
IEEE Trans. Med. Imaging
0278-0062,
13
, pp.
152
160
.
58.
Tseng
,
W. Y.
,
Wedeen
,
V. J.
,
Reese
,
T. G.
,
Smith
,
R. N.
, and
Halpern
,
E. F.
, 2003, “
Diffusion tensor MRI of myocardial fibers and sheets: Correspondence with visible cutface texture
,”
J. Magn. Reson Imaging
1053-1807,
17
, pp.
31
42
.
59.
Tseng
,
W. Y. I.
,
Reese
,
T. G.
,
Weisskoff
,
R. M.
,
Brady
,
T. J.
,
Dinsmore
,
R. E.
, and
Wedeen
,
V. J.
, 1997, “
Mapping myocardial fiber and sheet function in humans by magnetic resonance imaging (MRI)
,”
Circulation
0009-7322, Suppl. S,
96
, pp.
1096
.
60.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues and Organs
,
Springer-Verlag
, NY.
61.
Costa
,
K. D.
,
May-Newman
,
K.
,
Farr
,
D. D.
,
O’Dell
,
W. G.
,
McCulloch
,
A. D.
, and
Omens
,
J. H.
, 1997, “
Three-dimensional residual strain in midanterior canine left ventricle
,”
Am. J. Physiol.
0002-9513,
273
, pp.
H1968
H1976
.
62.
Weiss
,
J. A.
,
Gardiner
,
J. C.
, and
Bonifasi-Lista
,
C.
, 2002, “
Ligament material behavior is nonlinear, viscoelastic and rate- independent under shear loading
,”
J. Biomech.
0021-9290,
35
, pp.
943
950
.
63.
Young
,
A. A.
,
Kraitchman
,
D. L.
,
Dougherty
,
L.
, and
Axel
,
L.
, 1995, “
Tracking and finite element analysis of stripe deformation in magnetic resonance tagging
,”
IEEE Trans. Med. Imaging
0278-0062,
14
, pp.
413
421
.
64.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive material properties of intact ventricular myocardium determined from a cylindrical model
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
42
55
.
You do not currently have access to this content.