Background: Atherosclerotic plaques may rupture without warning and cause acute cardiovascular syndromes such as heart attack and stroke. Methods to assess plaque vulnerability noninvasively and predict possible plaque rupture are urgently needed. Method: MRI-based three-dimensional unsteady models for human atherosclerotic plaques with multi-component plaque structure and fluid-structure interactions are introduced to perform mechanical analysis for human atherosclerotic plaques. Results: Stress variations on critical sites such as a thin cap in the plaque can be 300% higher than that at other normal sites. Large calcification block considerably changes stress/strain distributions. Stiffness variations of plaque components (50% reduction or 100% increase) may affect maximal stress values by 20–50 %. Plaque cap erosion causes almost no change on maximal stress level at the cap, but leads to 50% increase in maximal strain value. Conclusions: Effects caused by atherosclerotic plaque structure, cap thickness and erosion, material properties, and pulsating pressure conditions on stress/strain distributions in the plaque are quantified by extensive computational case studies and parameter evaluations. Computational mechanical analysis has good potential to improve accuracy of plaque vulnerability assessment.

1.
American Heart Association
, 2003,
Heart Disease and Stroke Statistics–2003 Update
. Dallas, Tex.
American Heart Association
.
2.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
, 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
0009-7322,
108
(
14
), pp.
1664
1672
.
3.
Naghavi
,
M.
,
et al.
, (same as Ref. 2), 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II
,”
Circulation
0009-7322,
108
(
15
), pp.
1772
1778
.
4.
Fuster
,
V.
, Editor; Co-Editors:
Cornhill
,
J. F.
,
Dinsmore
,
R. E.
,
Fallon
,
J. T.
,
Insull
,
W.
,
Libby
,
P.
,
Nissen
,
S.
,
Rosenfeld
,
M. E.
, and
Wagner
,
W. D.
, 1998,
The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification
,
AHA Monograph series
,
Futura Publishing
, Armonk, NY.
5.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics
,
Springer-Verlag
, NY.
6.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
O. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multi-Component FSI Models for Atherosclerotic Plaques: A 3-D FSI model
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
947
960
.
7.
Bock
,
R. W.
,
Gray-Weale
,
A. C.
,
Mock
,
F. P.
,
Stats
,
M. A.
,
Robinson
,
D. A.
,
Irwig
,
L.
, and
Lusby
,
R. J.
, 1993, “
The Natural History of Asymptomatic Carotid Artery Disease
,”
J. Vasc. Surg.
0741-5214,
17
, pp.
160
171
.
8.
Boyle
,
J. J.
, “
Association of Coronary Plaque Rupture and Atherosclerotic Inflammation
,”
J. Pathol.
0022-3417,
181
, pp.
93
99
.
9.
Corti
,
R.
,
Hutter
,
R.
,
Badimon
,
J. J.
, and
Fuster
,
V.
, 2004, “
Evolving Concepts in the Triad of Atherosclerosis, Inflammation and Thrombosis
,”
J. Thromb. Thrombolysis
,
17
(
1
), pp.
35
44
.
10.
Ravn
,
H. B.
, and
Falk
,
E.
, 1999, “
Histopathology of Plaque Rupture
,”
Cardiol. Clin.
0733-8651,
17
, pp.
263
270
.
11.
Staniloae
,
C. S.
, and
Ambrose
,
J. A.
, 2003, “
Identification of Vulnerable Atherosclerotic Plaques
,”
Expert Rev. Cardiovasc. Therapy
,
1
(
3
), pp.
353
365
.
12.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
, 2001, “
Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
0033-8419,
221
, pp.
285
299
.
13.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Ferguson
,
M. S.
,
Polissar
,
N. L.
,
Echelard
,
D. E.
,
Ortiz
,
G.
,
Small
,
R.
,
Davies
,
J. W.
,
Kerwin
,
W. S.
, and
Hatsukami
,
T. S.
, 2001, “
In Vivo Accuracy of Multispectral MR Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques
,”
Circulation
0009-7322,
104
, pp.
2051
2056
.
14.
Cai
,
J. M.
,
Hatsukami
,
T. S.
,
Ferguson
,
M. S.
,
Small
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
, 2002, “
Classification of Human Carotid Atherosclerotic Lesions with In Vivo Multicontrast Magnetic Resonance Imaging
,”
Circulation
0009-7322,
106
, pp.
1368
1373
.
15.
Hatsukami
,
T. S.
,
Ross
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
, 2000, “
Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo with High-resolution Magnetic Resonance Imaging
,”
Circulation
0009-7322,
102
, pp.
959
964
.
16.
Ohayon
,
J.
,
Teppaz
,
Pierre.
,
Finet
,
G.
, and
Rioufol
,
G.
, 2001, “
In-vivo Prediction of Human Coronary Plaque Rupture Location using Intravascular Ultrasound and the Finite Element Method
,”
Coron. Artery Dis.
0954-6928,
12
, pp.
655
663
.
17.
Park
,
J. B. R.
, and
Tobis
,
J. M.
, 1997, “
Spontaneous Plaque Rupture and Thrombus Formation in the Left Main Coronary Artery Documented by Intravascular Ultrasound
,”
Cathet Cardiovasc. Diagn.
0098-6569,
40
, pp.
358
360
.
18.
Pedersen
,
P. C.
,
Chakareski
,
J.
, and
Lara-Montalvo
,
R.
, 2003, “
Ultrasound Characterization of Arterial Wall Structures based on Integrated Backscatter Profiles
,”
Proc. for the 2003 SPIE Med Imaging Symposium
, San Diego, pp.
115
126
.
19.
Chandran
,
K. B.
,
Mun
,
J. H.
,
Choi
,
K. K.
,
Chen
,
J. S.
,
Hamilton
,
A.
,
Nagaraj
,
A.
, and
McPherson
,
D. D.
, 2003, “
A Method for In-vivo Analysis for Regional Arterial Wall Material Property Alterations with Atherosclerosis: Preliminary Results
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
289
298
.
20.
Beattie
,
D.
,
Xu
,
C.
,
Vito
,
R. P.
,
Glagov
,
S.
, and
Whang
,
M. C.
, 1998, “
Mechanical Analysis of Heterogeneous, Atherosclerotic Human Aorta
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
602
607
.
21.
Brossollet
,
L. J.
, and
Vito
,
R. P.
, 1996, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, with Application to Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
118
, pp.
433
439
.
22.
Lee
,
R. T.
,
Schoen
,
F. J.
,
Loree
,
H. M.
,
Lark
,
M. W.
, and
Libby
,
P.
, 1996, “
Circumferential Stress and Matrix Metalloproteinase 1 in Human Coronary Atherosclerosis. Implications for Plaque Rupture
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
16
, pp.
1070
1073
.
23.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
, 1992, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
0009-7330,
71
, pp.
850
858
.
24.
Loree
,
H. M.
,
Tobias
,
B. J.
,
Gibson
,
L. J.
,
Kamm
,
R. D.
,
Small
,
D. M.
, and
Lee
,
R. T.
, 1994, “
Mechanical Properties of Model Atherosclerotic Lesion Lipid Pools
,”
Arterioscler. Thromb.
1049-8834
14
, pp.
230
234
.
25.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
, 1993, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions, A Structural Analysis with Histopathological Correlation
,”
Circulation
0009-7322,
87
, pp.
1179
1187
.
26.
McCord
,
B. N.
, 1992, “
Fatigue of Atherosclerotic Plaque
,” Ph.D. thesis, Georgia Institute of Technology.
27.
McCord
,
B. N.
, and
Ku
,
D. N.
, 1993, “
Mechanical Rupture of the Atherosclerostic Plaque Fibrous Cap
,”
Proceedings of 1993 Bioengineering Conference
, Colorado, BED-Vol.
24
, pp.
324
327
.
28.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2001, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
0009-7322,
103
, pp.
1051
1056
.
29.
Kaazempur-Mofrad
,
M. R.
,
Bathe
,
M.
,
Karcher
,
H.
,
Younis
,
H. F.
,
Seong
,
H. C.
,
Shim
,
E. B.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
Isasi
,
A. G.
,
Upadhyaya
,
A.
,
Powers
,
M. J.
,
Griffith
,
L. G.
, and
Kamm
,
R. D.
, 2003, “
Role of Simulation in Understanding Biological Systems
,”
Comput. Struct.
0045-7949,
81
, pp.
715
726
.
30.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad
,
M. R.
, and
Kamm
,
R. D.
, 2003, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
147
155
.
31.
Long
,
Q.
,
Xu
,
X. Y.
,
Bourne
,
M.
, and
Griffith
,
T. M.
, 2000, “
Numerical Study of Blood Flow in an Anatomically Realistic Aorta-iliac Bifurcation Generated from MRI Data
,”
Magn. Reson. Med.
0740-3194,
43
, pp.
565
576
.
32.
Steinman
,
D. A.
,
Thomas
,
J. B.
,
Ladak
,
H. M.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
, 2002, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness using Computational Fluid Dynamics and MRI
,”
Magn. Reson. Med.
0740-3194,
47
(
1
), pp.
149
159
.
33.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2002, “
Numerical Analysis of Flow through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731
124
(
1
), pp.
9
20
.
34.
Kaazempur-Mofrad
,
M. R.
,
Isasi
,
A. G.
,
,
Younis
,
H. F.
,
Chan
,
R. C.
,
Hinton
,
D. P.
,
,
Sukhova
,
G.
,
Lamuraglia
,
G. M.
,
Lee
,
R. T.
, and
Kamm
,
R. D.
, 2004, “
Characterization of the Atherosclerotic Carotid Bifurcation Using MRI, Finite Element Modeling, and Histology
,”
Ann. Biomed. Eng.
0090-6964,
32
(
7
), pp.
932
946
.
35.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2001, “
Steady Flow and Wall Compression in Stenotic Arteries: A 3-D Thick-Wall Model with Fluid-Wall Interactions
,”
ASME J. Biomech. Eng.
0148-0731
123
, pp.
548
557
.
36.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2002, “
Simulating Cyclic Artery Compression Using a 3-D Unsteady Model with Fluid-Structure Interactions
,”
Comput. Struct.
0045-7949,
80
, pp.
1651
1665
.
37.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
, and
Vito
,
R. P.
, 2003, “
Effects of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1182
1193
.
38.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
, 2004, “
Effect of a Lipid Pool on Stress/Strain Distributions in Stenotic Arteries: 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
363
370
.
39.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
, Englewood Cliffs, NJ.
40.
Bathe
,
K. J.
, 2002,
Theory and Modeling Guide
, Vols.
I & II
:
ADINA and ADINA-F, ADINA R & D, Inc.
, Watertown, MA.
41.
Bathe
,
K. J.
, 2002,
ADINA Verification Manual
,
ADINA R&D, Inc.
, Watertown, MA.
42.
Kobayashi
,
S.
,
Tsunoda
,
D.
,
Fukuzawa
,
Y.
,
Morikawa
,
H.
,
Tang
,
D.
, and
Ku
,
D. N.
, 2003, “
Flow and Compression in Arterial Models of Stenosis with Lipid Core
,”
Proceedings of 2003 ASME Summer Bioengineering Conference
, pp.
497
498
.
43.
Schroeder
,
W.
,
Martin
,
K.
,
Lorensen
,
B.
, 1998,
The Visualization Toolkit
,
An Object-Oriented Approach To 3D Graphics
,
2nd Edition
,
Prentice-Hall
, Englewood Cliffs, NJ.
44.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1993, “
The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis
,”
ASME J. Biomech. Eng.
0148-0731,
115
, pp.
588
594
.
45.
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1990, “
Responses of Arteries to Near-Wall Fluid Dynamic Behavior
,”
Appl. Mech. Rev.
0003-6900
43
, pp.
S98
S102
.
46.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
47.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
293
302
.
48.
Gould
,
K. L.
, 1999,
Coronary Artery Stenosis and Reversing Atherosclerosis
,
2nd Edition
, London, Arnold.
You do not currently have access to this content.