A two-dimensional axi-symmetric numerical model is constructed of the spinal cord, consisting of elastic cord tissue surrounded by aqueous cerebrospinal fluid, in turn surrounded by elastic dura. The geometric and elastic parameters are simplified but of realistic order, compared with existing measurements. A distal reflecting site models scar tissue formed by earlier trauma to the cord, which is commonly associated with syrinx formation. Transients equivalent to both arterial pulsation and percussive coughing are used to excite wave propagation. Propagation is investigated in this model and one with a central canal down the middle of the cord tissue, and in further idealized versions of it, including a model with no cord, one with a rigid cord, one with a rigid dura, and a double-length untapered variant of the rigid-dura model. Analytical predictions for axial and radial wave-speeds in these different situations are compared with, and used to explain, the numerical outcomes. We find that the anatomic circumstances of the spinal cerebrospinal fluid cavity probably do not allow for significant wave steepening phenomena. The results indicate that wave propagation in the real cord is set by the elastic properties of both the cord tissue and the confining dura mater, fat, and bone. The central canal does not influence the wave propagation significantly.

1.
Klekamp
,
J.
, 2002, “
The Pathophysiology of Syringomyelia—Historical Overview and Current Concept
,”
Acta Neurochir.
0001-6268,
144
, pp.
649
664
.
2.
Stoodley
,
M. A.
,
Gutschmidt
,
B.
, and
Jones
,
N. R.
, 1999, “
Cerebrospinal Fluid Flow in an Animal Model of Noncommunicating Syringomyelia
,”
Neurosurgery
0148-396X,
44
(
5
), pp.
1065
1075
.
3.
Abel
,
R.
,
Gerner
,
H. J.
,
Smit
,
C.
, and
Meiners
,
T.
, 1999, “
Residual Deformity of the Spinal Canal in Patients With Traumatic Paraplegia and Secondary Changes of the Spinal Cord
,”
Spinal Cord
1362-4393,
37
, pp.
14
10
.
4.
Backe
,
H. A.
,
Betz
,
R. R.
,
Mesgarzadeh
,
M.
,
Beck
,
T.
, and
Clancy
,
M.
, 1991, “
Post-Traumatic Spinal Cord Cysts Evaluated by Magnetic Resonance Imaging
,”
Paraplegia
0031-1758,
29
, pp.
607
612
.
5.
Williams
,
B.
, 1994, “
Pathogenesis of Post-Traumatic Syringomyelia
,”
Br. J. Neurosurg.
0268-8697,
8
, pp.
114
115
.
6.
Brodbelt
,
A. R.
,
Stoodley
,
M. A.
,
Watling
,
A. M.
,
Tu
,
J.
, and
Jones
,
N. R.
, 2003, “
Fluid Flow in an Animal Model of Post-Traumatic Syringomyelia
,”
Eur. Spine J.
0940-6719,
12
, pp.
300
306
.
7.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
, 1999, “
A Theoretical Model of Pressure Propagation in the Human Spinal CSF System
,”
J. Eng. Mech.
0733-9399,
6
, pp.
213
228
.
8.
Berkouk
,
K.
,
Carpenter
,
P. W.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled co-Axial Elastic Tubes. Part 1: Basic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
852
856
.
9.
Carpenter
,
P. W.
,
Berkouk
,
K.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled co-Axial Elastic Tubes. Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
857
863
.
10.
11.
Morse
,
P. M.
, and
Ingard
,
K. U.
, 1968,
Theoretical Acoustics
,
McGraw-Hill
, New York, Chap. 9.
12.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland
, Amsterdam.
13.
Milhorat
,
T. H.
,
Capocelli
,
A. L.
, Jr.
,
Anzil
,
A. P.
,
Kotzen
,
R. M.
, and
Milhorat
,
R. H.
, 1995, “
Pathological Basis of Spinal Cord Cavitation in Syringomyelia: Analysis of 105 Autopsy Cases
,”
J. Neurosurg.
0022-3085,
82
(
5
), pp.
802
812
.
14.
Milhorat
,
T. H.
,
Johnson
,
R. W.
,
Milhorat
,
R. H.
,
Capocelli
,
A. L.
, and
Pevsner
,
P. H.
, 1995, “
Clinicopathological Correlations in Syringomyelia Using Axial Magnetic Resonance Imaging
,”
Neurosurgery
0148-396X,
37
(
2
), pp.
206
213
.
15.
Heiss
,
J. D.
,
Patronas
,
N.
,
DeVroom
,
H. L.
,
Shawker
,
T.
,
Ennis
,
R.
,
Kammerer
,
W.
,
Eidsath
,
A.
,
Talbot
,
T.
,
Morris
,
J.
,
Eskogliu
,
E.
, and
Oldfield
,
E. H.
, 1999, “
Elucidating the Pathophysiology of Syringomyelia
,”
J. Neurosurg.
0022-3085,
91
, pp.
553
562
.
16.
Brodbelt
,
A.
, and
Stoodley
,
M. A.
, 2003, “
Post-Traumatic Syringomyelia: A Review
,”
Clin. Neurosci.
1065-6766,
10
, pp.
401
408
.
17.
Brodbelt
,
A. R.
,
Stoodley
,
M. A.
,
Watling
,
A. M.
,
Tu
,
J.
,
Burke
,
S.
, and
Jones
,
N. R.
, 2003, “
Altered Subarachnoid Space Compliance and Fluid Flow in a Model of Post-Traumatic Syringomyelia
,”
Spine
0362-2436,
28
, pp.
E413
E419
.
18.
Cho
,
K. H.
,
Iwasaki
,
Y.
,
Imamura
,
H.
,
Hida
,
K.
, and
Abe
,
H.
, 1994, “
Experimental Model of Posttraumatic Syringomyelia: the Role of Adhesive Arachnoiditis in Syrinx Formation
,”
J. Neurosurg.
0022-3085,
80
(
1
), pp.
133
139
.
19.
Klekamp
,
J.
,
Volkel
,
K.
,
Bertels
,
C. J.
, and
Samii
,
M.
, 2001, “
Disturbances of Cerebrospinal Fluid Flow Attributable to Arachnoid Scarring Cause Interstitial Edema of the cat Spinal Cord
,”
Neurosurgery
0148-396X,
48
(
1
), pp.
174
185
.
20.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modelling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
71
79
.
21.
Kalata
,
W.
,
Lee
,
S.
,
Piersol
,
N.
,
Alperin
,
N.
,
Fischer
,
P.
, and
Loth
,
F.
, 2001, “
Three Dimensional Computational Fluid Dynamics of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
Proceedings of the ASME Summer Bioengineering Conference
, BED-Vol.
50
, pp.
449
450
.
22.
Kalata
,
W.
,
Lee
,
S. E.
,
Alperin
,
N.
,
Fischer
,
P. F.
, and
Loth
,
F.
, 2002, “
Numerical Simulation of Cerebrospinal Fluid Motion Within a Healthy and Diseased Spinal Canal
,”
Abstracts of the 4th World Congress of Biomechanics
, Calgary, Canada, 4–9 Aug.
23.
Chang
,
H. S.
, and
Nakagawa
,
H.
, 2003, “
Hypothesis on the Pathophysiology of Syringomyelia Based on Simulation of Cerebrospinal Fluid Dynamics
,”
J. Neurol., Neurosurg. Psychiatry
0022-3050,
74
, pp.
344
347
.
24.
Bilston
,
L. E.
,
Fletcher
,
D. F.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2003, “
Arterial Pulsation-Driven Cerebrospinal Fluid Flow in the Perivascular Space: a Computational Model
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
, pp.
235
241
.
25.
Hung
,
T. K.
,
Lin
,
H. S.
,
Bunegin
,
L.
, and
Albin
,
M. S.
, 1982, “
Mechanical and Neurological Response of cat Spinal Cord Under Static Loading
,”
Surg. Neurol.
0090-3019,
17
, pp.
213
217
.
26.
Bilston
,
L. E.
, and
Thibault
,
L. E.
, 1996, “
The Mechanical Properties of the Human Cervical Spinal Cord in Vitro
,”
Ann. Biomed. Eng.
0090-6964,
24
, pp.
67
74
.
27.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
, 1968, “
Compressibility of the Arterial Wall
,”
Circ. Res.
0009-7330,
23
, pp.
61
68
.
28.
Bathe
,
K.-J.
, 1996,
Finite Element Procedures
,
Prentice-Hall Inc.
, New Jersey, pp.
268
296
.
29.
Wilcox
,
R. K.
,
Bilston
,
L. E.
,
Barton
,
D. C.
, and
Hall
,
R. M.
, 2003, “
Mathematical Model for the Viscoelastic Properties of Dura Mater
,”
J. Orthop. Sci.
0949-2658,
8
(
3
), pp.
432
434
.
30.
Shapiro
,
K.
,
Marmorou
,
A.
, and
Shulman
,
K.
, 1979, “
Characterization of Clinical CSF Dynamics and Neural Axis Compliance Using the Pressure-Volume Index: I. The Normal Pressure-Volume Index
,”
Ann. Neurol.
0364-5134,
7
, pp.
508
514
.
31.
Marmorou
,
A.
,
Shulman
,
K.
, and
LaMorgese
,
J.
, 1975, “
Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System
,”
J. Neurosurg.
0022-3085,
43
, pp.
523
534
.
32.
Williams
,
B.
, 1976, “
Cerebrospinal Fluid Pressure Changes in Response to Coughing
,”
Brain
0006-8950,
99
, pp.
331
346
.
33.
Womersley
,
J. R.
, 1955, “
Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube. I. The Linear Approximation for Long Waves
,”
Philos. Mag.
0031-8086,
46
, pp.
199
221
.
34.
Klip
,
W.
,
van Loon
,
P.
, and
Klip
,
D. A.
, 1967, “
Formulas for Phase Velocity and Damping of Longitudinal Waves in Thick-Walled Viscoelastic Tubes
,”
J. Appl. Phys.
0021-8979,
38
, pp.
3745
3755
.
You do not currently have access to this content.