The aim of this work is to develop a remotely controlled manipulator to perform minimally invasive diagnostic and therapeutic interventions in the abdominal and thoracic cavities, with real-time magnetic resonance imaging (MRI) guidance inside clinical cylindrical MR scanners. The manipulator is composed of a three degree of freedom Cartesian motion system, which resides outside the gantry of the scanner, and serves as the holder and global positioner of a three degree of freedom arm which extends inside the gantry of the scanner. At its distal end, the arm’s end-effector can carry an interventional tool such as a biopsy needle, which can be advanced to a desired depth by means of a seventh degree of freedom. These seven degrees of freedom, provided by the entire assembly, offer extended manipulability to the device and a wide envelope of operation to the user, who can select a trajectory suitable for the procedure. The device is constructed of nonmagnetic and nonconductive fiberglass, and carbon fiber composite materials, to minimize artifacts and distortion on the MR images as well as eliminate effects on its operation from the high magnetic field and the fast switching magnetic field gradients used in MR imaging. A user interface was developed for man-in-the-loop control of the device using real-time MR images. The user interface fuses all sensor signals (MR and manipulator information) in a visualization, planning, and control command environment. Path planning is performed with graphical tools for setting the trajectory of insertion of the interventional tool using multislice and∕or three dimensional MR images which are refreshed in real time. The device control is performed with an embedded computer which runs real-time control software. The manipulator compatibility with the MR environment and image-guided operation was tested on a 1.5T MR scanner.

1.
Debatin-G.Adam
,
J. F.
, 1998,
Interventional Magnetic Resonance Imaging
,
Springer
, Berlin.
2.
Jolesz
,
F.
,
Kahn
,
T.
, and
Lufkin
,
R.
, 1998, “
Genesis of Interventional MRI
,”
J. Magn. Reson Imaging
1053-1807,
8
, p.
2
.
3.
Jolesz
,
F. A.
, 1998, “
Interventional and Intraoperative MRI: A General Overview of the Field
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
3
7
.
4.
Lufkin
,
R. B.
, 1999,
Interventional MRI
,
Mosby
, St. Louis.
5.
Ladd
,
M. E.
,
Zimmermann
,
G. G.
,
Quick
,
H. H.
,
Debatin
,
J. F.
,
Boesiger
,
P.
,
von Schulthess
,
G. K.
, and
McKinnon
,
G. C.
, 1998, “
Active MR Visualization of a Vascular Guidewire In Vivo
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
220
225
.
6.
Lewin
,
J. S.
,
Nour
,
S. G.
, and
Duerk
,
J. L.
, 2000, “
Magnetic Resonance Image-Guided Biopsy and Aspiration
,”
Top Magn. Reson Imaging
0899-3459,
11
, pp.
173
183
.
7.
Jolesz
,
F. A.
,
Nabavi
,
A.
, and
Kikinis
,
R.
, 2001, “
Integration of Interventional MRI With Computer-Assisted Surgery
,”
J. Magn. Reson Imaging
1053-1807,
13
, pp.
69
77
.
8.
Jolesz
,
F. A.
,
Morrison
,
P. R.
,
Koran
,
S. J.
,
Kelley
,
R. J.
,
Hushek
,
S. G.
,
Newman
,
R. W.
,
Fried
,
M. P.
,
Melzer
,
A.
,
Seibel
,
R. M.
, and
Jalahej
,
H.
, 1998, “
Compatible Instrumentation for Intraoperative MRI: Expanding Resources
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
8
11
.
9.
Masamune
,
K.
,
Kobayashi
,
E.
,
Masutani
,
Y.
,
Suzuki
,
M.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takakura
,
K.
, 1995, “
Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery
,”
J. Image Guid Surg.
1078-7844,
1
, pp.
242
248
.
10.
Kaiser
,
W. A.
,
Fischer
,
H.
,
Vagner
,
J.
, and
Selig
,
M.
, 2000, “
Robotic System for Biopsy and Therapy of Breast Lesions in a High-Field Whole-Body Magnetic Resonance Tomography Unit
,”
Invest. Radiol.
0020-9996,
35
, pp.
513
519
.
11.
Felden
,
A.
,
Vagner
,
J.
,
Hinz
,
A.
,
Fischer
,
H.
,
Pfleiderer
,
S. O.
,
Reichenbach
,
J. R.
, and
Kaiser
,
W. A.
, 2002, “
ROBITOM-Robot for Biopsy and Therapy of the Mamma
,”
Biomed. Tech.
0013-5585,
47
, pp.
2
5
.
12.
Tsekos
,
N. V.
,
Shudy
,
J.
,
Yacoub
,
E.
,
Tsekos
,
P. V.
, and
Koutlas
,
I. G.
, 2001, “
Development of a Robotic Device for MRI-Guided Interventions in the Breast
,” presented at the
2nd IEEE International Symposium on Bioinformatics and Bioengineering
, Washinghton, DC.
13.
Larson
,
B. T.
,
Erdman
,
A. G.
,
Tsekos
,
N. V.
,
Yacoub
,
E.
,
Tsekos
,
P. V.
, and
Koutlas
,
I. G.
, 2004, “
Design of an MRI-Compatible Robotic Stereotactic Device for Minimally Invasive Interventions in the Breast
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
458
465
.
14.
Chinzei
,
K.
, and
Miller
,
K.
, 2001, “
Towards MRI Guided Surgical Manipulator
,”
Med Sci Monit
,
7
, pp.
153
163
.
15.
Susil
,
R. C.
,
Krieger
,
A.
,
Derbyshire
,
J. A.
,
Tanacs
,
A.
,
Whitcomb
,
L. L.
,
Fichtinger
,
G.
, and
Atalar
,
E.
, 2003, “
System for MR Image-Guided Prostate Interventions: Canine Study
,”
Radiology
0033-8419,
228
, pp.
886
894
.
16.
Susil
,
R. C.
,
Camphausen
,
K.
,
Choyke
,
P.
,
McVeigh
,
E. R.
,
Gustafson
,
G. S.
,
Ning
,
H.
,
Miller
,
R. W.
,
Atalar
,
E.
,
Coleman
,
C. N.
, and
Menard
,
C.
, 2004, “
System for Prostate Brachytherapy and Biopsy in a Standard 1.5T MRI Scanner
,”
Magn. Reson. Med.
0740-3194,
52
, pp.
683
687
.
17.
Masamune
,
K.
,
Fichtinger
,
G.
,
Patriciu
,
A.
,
Susil
,
R. C.
,
Taylor
,
R. H.
,
Kavoussi
,
L. R.
,
Anderson
,
J. H.
,
Sakuma
,
I.
,
Dohi
,
T.
, and
Stoianovici
,
D.
, 2001, “
System for Robotically Assisted Percutaneous Procedures With Computed Tomography Guidance
,”
Comput. Aided Surg.
1092-9088,
6
, pp.
370
383
.
18.
Fichtinger
,
G.
,
DeWeese
,
T. L.
,
Patriciu
,
A.
,
Tanacs
,
A.
,
Mazilu
,
D.
,
Anderson
,
J. H.
,
Masamune
,
K.
,
Taylor
,
R. H.
, and
Stoianovici
,
D.
, 2002, “
System for Robotically Assisted Prostate Biopsy and Therapy With Intraoperative CT Guidance
,”
Acad. Radiol.
1076-6332,
9
, pp.
60
74
.
19.
Gui
,
D.
,
Ozcan
A.
,
Zheng
J.
,
Menias
C. O.
, and
Tsekos
,
N. V.
, 2005, “
Dynamic Volumetric Imaging of an Area of Interest with Interleaved Acquisition of Intra-Oblique Slices
,
Proceedings of the 13th Meeting Int. Soc. Magnet Reson. Medicine
, Miami, p.
790
.
20.
Gui
,
D.
,
Ozcan
,
A.
,
Zheng
,
J.
,
Menias
,
C. O.
, and
Tsekos
,
N. V.
, 2005, “
Oblique Multislice MRI for Dynamic Volume Imaging of an Area of Interest
,”
J. Magn. Reson Imaging
1053-1807, (in press).
21.
Henkelman
,
R. M.
, 1985, “
Measurement of Signal Intensities in the Presence of Noise in MR Images
,”
Med. Phys.
0094-2405,
12
, pp.
232
233
.
22.
Seibel
,
R. M.
,
Melzer
,
A.
,
Schmidt
,
A.
, and
Plabetamann
,
J.
, 1997, “
Computed Tomography- and Magnetic Resonance Imaging: Guided Microtherapy
,”
Semin Laparosc Surg.
1071-5517,
4
, pp.
61
73
.
23.
Sequeiros
,
R. B.
,
Ojala
,
R. O.
,
Klemola
,
R.
,
Vaara
,
T. J.
,
Jyrkinen
,
L.
, and
Tervonen
,
O. A.
, 2002, “
MRI-Guided Periradicular Nerve Root Infiltration Therapy in Low-Field (0.23‐T) MRI System Using Optical Instrument Tracking
,”
Eur. Radiol.
0938-7994,
12
, pp.
1331
1337
.
24.
Fried
,
M. P.
, and
Jolesz
,
F. A.
, 1993, “
Image-Guided Intervention for Diagnosis and Treatment of Disorders of the Head and Neck
,”
Laryngoscope
0023-852X,
103
, pp.
924
927
.
25.
Boaz
,
T. L.
,
Lewin
,
J. S.
,
Chung
,
Y. C.
,
Duerk
,
J. L.
,
Clampitt
,
M. E.
, and
Haaga
,
J. R.
, 1998, “
MR Monitoring of MR-Guided Radiofrequency Thermal Ablation of Normal Liver in an Animal Model
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
64
69
.
26.
Wilson
,
D. L.
,
Carrillo
,
A.
,
Zheng
,
L.
,
Genc
,
A.
,
Duerk
,
J. L.
, and
Lewin
,
J. S.
, 1998, “
Evaluation of 3D Image Registration as Applied to MR-Guided Thermal Treatment of Liver Cancer
,”
J. Magn. Reson Imaging
1053-1807,
8
, pp.
77
84
.
27.
Merkle
,
E. M.
,
Shonk
,
J. R.
,
Duerk
,
J. L.
,
Jacobs
,
G. H.
, and
Lewin
,
J. S.
, 1999, “
MR-Guided RF Thermal Ablation of the Kidney in a Porcine Model
,”
AJR, Am. J. Roentgenol.
0361-803X,
173
, pp.
645
651
.
28.
Aschoff
,
A. J.
,
Rafie
,
N.
,
Jesberger
,
J. A.
,
Duerk
,
J. L.
, and
Lewin
,
J. S.
, 2000, “
Thermal Lesion Conspicuity Following Interstitial Radiofrequency Thermal Tumor Ablation in Humans: A Comparison of STIR, Turbo Spin-Echo T2-Weighted, and Contrast-Enhanced T1-Weighted MR Images at 0.2T
,”
J. Magn. Reson Imaging
1053-1807,
12
, pp.
584
589
.
29.
Dick
,
E. A.
,
Joarder
,
R.
,
De Jode
,
M. G.
,
Wragg
,
P.
,
Vale
,
J. A.
, and
Gedroyc
,
W. M.
, 2002, “
Magnetic Resonance Imaging-Guided Laser Thermal Ablation of Renal Tumours
,”
Br. J. Urol.
0007-1331,
90
, pp.
814
822
.
30.
McDannold
,
N. J.
, and
Jolesz
,
F. A.
, 2000, “
Magnetic Resonance Image-Guided Thermal Ablations
,”
Top Magn. Reson Imaging
0899-3459,
11
, pp.
191
202
.
31.
Tacke
,
J.
,
Speetzen
,
R.
,
Adam
,
G.
,
Sellhaus
,
B.
,
Glowinski
,
A.
,
Heschel
,
I.
,
Schaffter
,
T.
,
Schorn
,
R.
,
Grosskortenhaus
,
S.
,
Rau
,
G.
, and
Gunther
,
R. W.
, 2001, “
Experimental MR Imaging-Guided Interstitial Cryotherapy of the Brain
,”
AJNR Am. J. Neuroradiol.
0195-6108,
22
, pp.
431
440
.
32.
Gronemeyer
,
D. H.
,
Jolesz
,
F. A.
,
Lufkin
,
R.
, and
Seibel
,
R.
, 1996, “
Image-Guided Access Enhances Microtherapy
,”
Diagn. Imaging
0378-9837,
, pp.
IR2
IR5
.
33.
Rohde
,
V.
,
Reinges
,
M. H.
,
Krombach
,
G. A.
, and
Gilsbach
,
J. M.
, 1998, “
The Combined Use of Image-Guided Frameless Stereotaxy and Neuroendoscopy for the Surgical Management of Occlusive Hydrocephalus and Intracranial Cysts
,”
Br. J. Neurosurg.
0268-8697,
12
, pp.
531
538
.
34.
Balmer
,
B.
,
Bernays
,
R. L.
,
Kollias
,
S. S.
, and
Yonekawa
,
Y.
, 2002, “
Interventional MR-Guided Neuroendoscopy: A New Therapeutic Option for Children
,”
J. Pediatr. Surg.
0022-3468,
37
, pp.
668
672
.
35.
Alexander
,
E.
, III
, 2001, “
Optimizing Brain Tumor Resection. Midfield Interventional MR Imaging
,”
Neuroimaging Clin. N. Am.
1052-5149,
11
, pp.
659
672
.
36.
Scholz
,
M.
,
Deli
,
M.
,
Wildforster
,
U.
,
Wentz
,
K.
,
Recknagel
,
A.
,
Preuschoft
,
H.
, and
Harders
,
A.
, 1996, “
MRI-Guided Endoscopy in the Brain: A Feasability Study
,”
Minim Invasive Neurosurg.
0946-7211,
39
, pp.
33
37
.
37.
Gronemeyer
,
D. H.
,
Seibel
,
R. M.
,
Schmidt
,
A.
,
Melzer
,
A.
, and
Dell
,
M.
, 1996, “
Two- and Three-Dimensional Imaging for Interventional MRI and CT Guidance
,”
Stud Health Technol Inform
,
29
, pp.
62
76
.
You do not currently have access to this content.