Background: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus—an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. Method of Approach: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrained flexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. Results: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. Conclusions: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.

1.
Benzel
,
E. C.
, 1995, “
Spinal Fusion
,” in
Biomechanics of Spine Stabilization
,
E. C.
,
Benzel
ed.,
McGraw-Hill
, New York, pp.
103
108
.
2.
Escobar
,
E.
,
Transfeldt
,
E.
,
Garvey
,
T.
,
et al.
, 2003, “
Video-Assisted Versus Open Anterior Lumbar Spine Fusion Surgery: A Comparison of Four Techniques and Complications in 135 Patients
,”
Spine
0362-2436,
28
, pp.
729
732
.
3.
Heim
,
S. E.
, and
Altimari
,
A.
, 2002, “
Laparoscopic Approaches to Fusion of the Lumbosacral Spine: Latest Techniques
,”
Orthop. Clin. North Am.
0030-5898,
33
, pp.
413
420
.
4.
Markolf
,
K. L.
, and
Morris
,
J. M.
, 1974, “
The Structural Components of the Intervertebral Disc. A Study of Their Contributions to the Ability of the Disc to Withstand Compressive Forces
,”
J. Bone Jt. Surg.
0021-9355,
56-A
(
4
), pp.
675
687
.
5.
Ahlgren
,
B. D.
,
Vasavada
,
A.
,
Brower
,
R. S.
,
et al.
, 1994, “
Anular Incision Technique on the Strength and Multidirectional Flexibility of the Healing Intervertebral Disk
,”
Spine
0362-2436,
19
(
8
),
948
954
.
6.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990, “
Biomechanical Considerations in Surgical Management of the Spine
,” in
Clinical Biomechanics of the Spine
,
A. A.
,
White
and
M. M.
,
Panjabi
, eds.,
J. B. Lippincott Co.
, Philadelphia, PA, pp.
528
568
.
7.
Tencer
,
A. F.
,
Hampton
,
D.
, and
Eddy
,
S.
, 1995, “
Biomechanical Properties of Threaded Inserts for Lumbar Interbody Spinal Fusion
,”
Spine
0362-2436,
20
(
22
), pp.
2408
2414
.
8.
Benzel
,
E. C.
, 1995, “
Spinal Fusion
,” in
Biomechanics of Spine Stabilization
,
E. C.
,
Benzel
, ed.,
McGraw-Hill
, NY, pp.
103
108
.
9.
Minamide
,
A.
,
Akamaru
,
T.
,
Yoon
,
S. T.
,
Tamaki
,
T.
,
Rhee
,
J. M.
, and
Hutton
,
W. C.
, 2003, “
Transdiscal L5-S1 Screws for the Fixation of Isthmic Spondylolisthesis: A Biomechanical Evaluation
,”
J. Spinal Disord.
0895-0385,
16
, pp.
144
149
.
10.
Meyers
,
A. M.
,
Noonan
,
J. K.
,
Mih
,
A. D.
,
et al.
, 2001, “
Salvage Reconstruction With Vascularized Fibular Strut Graft Fusion Using Posterior Approach in the Treatment of Severe Spondylolisthesis
,”
Spine
0362-2436,
26
, pp.
1820
1824
.
11.
MacMillan
,
M.
,
Fessler
,
R. G.
,
Gillespy
,
M.
, and
Montgomery
,
W. J.
, 1996, “
Percutaneous Lumbosacral Fixation and Fusion. Anatomic Study and Two-Year Experience With a New Method
,”
Neurosurg. Clin. N. Am.
1042-3680,
7
, pp.
99
106
.
12.
Cragg
,
A.
,
Carl
,
A.
,
Casteneda
,
F.
,
Dickman
,
C.
,
Guterman
,
L.
, and
Oliveira
,
C.
, 2004, “
New Percutaneous Access Method for Minimally Invasive Anterior Lumbosacral Surgery
,”
J. Spinal Disord.
0895-0385,
17
, pp.
21
28
.
13.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott
, Philadelphia, pp.
47
55
.
14.
Patwardhan
,
A.
,
Havey
,
R.
, and
Meade
,
K.
, 1999, “
A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression
,”
Spine
0362-2436,
24
, pp.
1003
1009
.
15.
Madan
,
S.
, and
Boeree
,
N. R.
, 2002, “
Outcome of Posterior Lumbar Interbody Fusion Versus Posterolateral Fusion for Spondylolytic Spondylolisthesis
,”
Spine
0362-2436,
27
(
14
), pp.
1536
1542
.
16.
Benz
,
R. J.
,
Ibrahim
,
Z. G.
,
Afshar
,
P.
, and
Garfin
,
S. R.
, 2001, “
Predicting Complications in Elderly Patients Undergoing Lumbar Decompression
,”
Clin. Orthop. Relat. Res.
0009-921X,
384
, pp.
116
121
.
17.
Sidhu
,
K. S.
, and
Herkowitz
,
H. N.
, 1997, ‘
Spinal Instrumentation in the Management of Degenerative Disorders of the Lumbar Spine
,’
Clin. Orthop. Relat. Res.
0009-921X,
335
, pp.
39
53
.
18.
Goel
,
V. K.
, and
Gilbertson
,
L. G.
, 1997, “
Basic Science of Spinal Instrumentation
,”
Clin. Orthop. Relat. Res.
0009-921X,
335
, pp.
10
31
.
19.
Riley
,
L. H.
,
Eck
,
J. C.
,
Yoshida
,
H.
,
et al.
, 1997, “
Laproscopic Assisted Fusion of the Lumbrosacral Spine—A Biomechanical and Histologic Analysis of the Open Versus Laproscopic Technique in an Animal Model
,”
Spine
0362-2436,
22
, pp.
1407
1412
.
20.
Khoo
,
L. T.
,
Palmer
,
S.
,
Laich
,
D. T.
, and
Fessler
,
R. G.
, 2002, “
Minimally Invasive Percutaneous Posterior Lumbar Interbody Fusion
,”
Neurosurgery
0148-396X,
51
(
5
Suppl), pp.
166
181
.
21.
Pellise
,
F.
,
Puig
,
O.
,
Rivas
,
A.
,
et al.
, 2002, “
Low Fusion Rate After L5-S1 Laparoscopic Anterior Lumbar Interbody Fusion Using Twin Stand-Alone Carbon Fiber Cages
,”
Spine
0362-2436,
27
(
15
), pp.
1665
1669
.
22.
Ray
,
C. D.
, 1997, “
Threaded Titanium Cages for Lumbar Interbody Fusions
,”
Spine
0362-2436,
22
(
6
), pp.
667
679
.
23.
Minamide
,
A.
,
Akamaru
,
T.
,
Yoon
,
S. T.
,
Tamaki
,
T
,
Rhee
,
J. M.
, and
Hutton
,
W. C.
, 2003, “
Transdiscal L5-S1 Screws for the Fixation of Isthmic Spondylolisthesis: A Biomechanical Evaluation
,”
J. Spinal Disord.
0895-0385,
16
, pp.
144
149
.
24.
Milburn
,
P. D.
, and
Barrett
,
R. S.
, 1999, “
Lumbosacral Loads in Bedmaking
,”
Appl. Ergon
0003-6870,
30
, pp.
263
273
.
25.
Button
,
G.
,
Gupta
,
M.
,
Barrett
,
C.
,
Cammack
,
P.
, and
Benson
,
D.
, 2005, “
Three- to Six-Year Follow-Up of Stand-Alone BAK Cages Implanted By a Single Surgeon
,”
The Spine Journal
,
5
(
2
), pp.
155
160
.
26.
Oxland
,
T. R.
,
Hoffer
,
Z.
,
Nydegger
,
T.
,
Rathonyi
,
G. C.
, and
Nolte
,
L. P.
, 2000, “
A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages: Central and Bilateral Approaches
,”
J. Bone Jt. Surg.
0021-9355,
82A
(
3
), pp.
383
393
.
27.
Philips
,
F. M.
,
Cunningham
,
B.
,
Carandang
,
G.
,
Ghanayem
,
A. J.
,
Voronov
,
L.
,
Havey
,
R. M.
, and
Patwardhan
,
A. G.
, 2004, “
Effect of Supplemental Translaminar Facet Screw Fixation on the Stability of Stand-Alone Anterior Lumbar Interbody Fusion Cages Under Physiologic Compressive Preloads
,”
Spine
0362-2436,
29
(
16
), pp.
1731
1736
.
28.
Bozkus
,
H.
,
Chamberlain
,
R. H.
,
Perez Garza
,
L. E.
,
Crawford
,
N. R.
, and
Dickman
,
C. A.
, 2004, “
Biomechanical Comparison of Anterolateral Plate, Lateral Plate, and Pedicle Screws-Rods for Enhancing Anterolateral Lumbar Interbody Cage Stabilization
,”
Spine
0362-2436,
29
(
6
), pp.
635
641
.
29.
Kanayama
,
M.
,
Cunningham
,
B. W.
,
Haggerty
,
C. J.
,
et al.
, 2000, “
In Vitro Biomechanical Investigation of the Stability and Stress-Shielding Effect of Lumbar Interbody Fusion Devices
,”
J. Neurosurg.
0022-3085,
93
, pp.
259
265
.
30.
Lim
,
T. H.
,
An
,
H.
,
Hong
,
J. H.
et al.
, 1997, “
Biomechanical Evaluation of Anterior and Posterior Fixations in an Unstable Calf Spine Model
,”
Spine
0362-2436,
22
, pp.
261
266
.
You do not currently have access to this content.