For more than 40years, the replacement of diseased natural heart valves with prosthetic devices has dramatically extended the quality and length of the lives of millions of patients worldwide. However, bioprosthetic heart valves (BHV) continue to fail due to structural failure resulting from poor tissue durability and faulty design. Clearly, an in-depth understanding of the biomechanical behavior of BHV at both the tissue and functional prosthesis levels is essential to improving BHV design and to reduce rates of failure. In this study, we simulated quasi-static BHV leaflet deformation under 40, 80, and 120mmHg quasi-static transvalvular pressures. A Fung-elastic material model was used that incorporated material parameters and axes derived from actual leaflet biaxial tests and measured leaflet collagen fiber structure. Rigorous experimental validation of predicted leaflet strain field was used to validate the model results. An overall maximum discrepancy of 2.36% strain between the finite element (FE) results and experiment measurements was obtained, indicating good agreement between computed and measured major principal strains. Parametric studies utilizing the material parameter set from one leaflet for all three leaflets resulted in substantial variations in leaflet stress and strain distributions. This result suggests that utilization of actual leaflet material properties is essential for accurate BHV FE simulations. The present study also underscores the need for rigorous experimentation and accurate constitutive models in simulating BHV function and design.

1.
AHA, Heart Disease and Stroke Statistics–2003 Update
, 2002,
American Heart Association
, Dallas, Tx.
2.
Schoen
,
F.
, and
Levy
,
R.
, 1994, “
Pathology of Substitute Heart Valves
,”
J. Card. Surg.
0886-0440,
9
, pp.
222
227
.
3.
Meyers
,
D. J.
,
Gross
,
J.
, and
Nakaya
,
G.
, 1994, “
Stentless Heart Valves: Biocompatibility Issues Associated With New Antimineralization and Fixation Agents
,” in
Stentless Bioprostheses
,
A.
Piwnica
and
S.
Westaby
, Eds.
Isis Medical
, Oxford, pp.
100
117
.
4.
Bengtsson
,
L.
,
Phillips
,
R.
, and
Haegerstrand
,
A.
, 1995, “
In-Vitro Endothelialization of Photooxidatively Stabilized Xenogenic Pericardium
,”
Ann. Thorac. Surg.
0003-4975,
60
, pp.
S365
S368
.
5.
Levy
,
R.
, 1994, “
Glutaraldehyde and the Calcification Mechanism of Bioprosthetic Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
3
, pp.
101
104
.
6.
Schoen
,
F.
, and
Levy
,
R.
, 1999, “
Tissue Heart Valves: Current Challenges and Future Research Perspectives
,”
J. Biomed. Mater. Res.
0021-9304,
47
, pp.
439
465
.
7.
Vyavahare
,
N. R.
,
Jones
,
P. L.
,
Hirsch
,
D.
,
Schoen
,
F. J.
, and
Levy
,
R. J.
, 2000, “
Prevention of Glutaraldehyde-Fixed Bioprosthetic Heart Valve Calcification by Alcohol Pretreatment: Further Mechanistic Studies
,”
J. Heart Valve Dis.
0966-8519,
9
(
4
), pp.
561
566
.
8.
Lovekamp
,
J.
, and
Vyavahare
,
N.
, 2001, “
Periodate-Mediated Glycosaminoglycan Stabilization in Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
0021-9304,
56
(
4
), pp.
478
486
.
9.
Connolly
,
J. M.
,
Alferiev
,
I.
,
Clark-Gruel
,
J. N.
,
Eidelman
,
N.
,
Sacks
,
M.
,
Palmatory
,
E.
,
Kronsteiner
,
A.
,
Defelice
,
S.
,
Xu
,
J.
,
Ohri
,
R.
,
Narula
,
N.
,
Vyavahare
,
N.
, and
Levy
,
R. J.
, 2005, “
Triglycidylamine Crosslinking of Porcine Aortic Valve Cusps or Bovine Pericardium Results in Improved Biocompatibility, Biomechanics, and Calcification Resistance: Chemical and Biological Mechanisms
,”
Am. J. Pathol.
0002-9440,
166
(
1
), pp.
1
13
.
10.
Moore
,
M.
,
Bohachevsky
,
I.
,
Cheung
,
D.
,
Boyan
,
B.
,
Chen
,
W.
,
Bickers
,
R.
, and
McIlroy
,
B.
, 1994, “
Stabilization of Pericardial Tissue by Dye-Mediated Photooxidation
,”
J. Biomed. Mater. Res.
0021-9304,
28
, pp.
611
618
.
11.
Moore
,
M.
,
Chen
,
W.
,
Phillips
,
R.
,
Bohachevsky
,
I.
, and
McIlroy
,
B.
, 1996, “
Shrinkage Temperature Versus Protein Extraction as a Measure of Stabilization of Photooxidized Tissue
,”
J. Biomed. Mater. Res.
0021-9304,
32
, pp.
209
214
.
12.
Moore
,
M.
,
McIlroy
,
B.
, and
Phillips
,
R.
, 1997, “
Nonaldehyde Sterilization of Biologic Tissue for Use in Implantable Medical Devices
,”
ASAIO J.
1058-2916,
43
, pp.
23
30
.
13.
Schoen
,
F. J.
, 1998, “
Pathologic Findings in Explanted Clinical Bioprosthetic Valves Fabricated From Photooxidized Bovine Pericardium
,”
J. Heart Valve Dis.
0966-8519,
7
(
2
), pp.
174
179
.
14.
Butterfield
,
M.
, and
Fisher
,
J.
, 2000, “
Fatigue Analysis of Clinical Bioprosthetic Heart Valves Manufactured Using Photooxidized Bovine Pericardium
,”
J. Heart Valve Dis.
0966-8519,
9
(
1
), pp.
161
166
; discussion 167.
15.
Schoen
,
F. J.
, and
Levy
,
R. J.
, 2005, “
Calcification of Tissue Heart Valve Substitutes: Progress Toward Understanding and Prevention
,”
Ann. Thorac. Surg.
0003-4975,
79
(
3
), pp.
1072
1080
.
16.
Schoen
,
F. J.
,
Fernandez
,
J.
,
Gonzalez-Lavin
,
L.
, and
Cernaianu
,
A.
, 1987, “
Causes of Failure and Pathologic Findings in Surgically Removed Ionescu-Shiley Standard Bovine Pericardial Heart Valve Bioprostheses: Emphasis on Progressive Structural Deterioration
,”
Circulation
0009-7322,
76
(
3
), pp.
618
627
.
17.
Hilbert
,
S. L.
,
Ferrans
,
V. J.
, and
Swanson
,
W. M.
, 1986, “
Optical Methods for the Nondestructive Evaluation of Collagen Morphology in Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
0021-9304,
20
, pp.
1411
1421
.
18.
Love
,
J. W.
,
Willems
,
P. W.
, and
Love
,
C. S.
, 1994 “
New Horizons and the Future of Heart Valve Prostheses
,”
S.
Gabbay
, and
F. R. W.
, eds.,
Silent Partners
, Austin.
19.
Sacks
,
M. S.
, and
Schoen
,
F. J.
, 2002, “
Collagen Fiber Disruption Occurs Independent of Calcification in Clinically Explanted Bioprosthetic Heart Valves
,”
J. Biomed. Mater. Res.
0021-9304,
62
(
3
), pp.
359
371
.
20.
Black
,
M. M.
,
Howard
,
I. C.
,
Huang
,
X. C.
, and
Patterson
,
E. A.
, 1991, “
A Three-Dimensional Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
0021-9290,
24
, pp.
793
801
.
21.
Hamid
,
M. S.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
, 1986, “
Influence of Stent Height Upon Stresses on the Cusps of Closed Bioprosthetic Valves
,”
J. Biomech.
0021-9290,
19
, pp.
759
769
.
22.
Huang
,
X.
,
Black
,
M. M.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1990, “
A Two Dimensional Finite Element Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
0021-9290,
23
, pp.
753
762
.
23.
Li
,
J.
,
Luo
,
X. Y.
, and
Kuang
,
Z. B.
, 2001, “
A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves
,”
J. Biomech.
0021-9290,
34
(
10
), pp.
1279
1289
.
24.
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1999, “
Influence of Anisotropy on the Mechanical Behaviour of Bioprosthetic Heart Valves
,”
J. Med. Eng. Technol.
0309-1902,
23
(
6
), pp.
203
215
.
25.
Krucinski
,
S.
,
Vesely
,
I.
,
Dokainish
,
M. A.
, and
Campbell
,
G.
, 1993, “
Numerical Simulation of Leaflet Flexure in Bioprosthetic Valves Mounted on Rigid and Expansile Stents
,”
J. Biomech.
0021-9290,
26
, pp.
929
943
.
26.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
1
), pp.
23
30
.
27.
Sacks
,
M. S.
, and
Chuong
,
C. J.
, 1998, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
0090-6964,
26
(
5
), pp.
892
902
.
28.
Sun
,
W.
,
Sacks
,
M. S.
,
Sellaro
,
T. L.
,
Slaughter
,
W. S.
, and
Scott
,
M. J.
, 2003, “
Biaxial Mechanical Response of Bioprosthetic Heart Valve Biomaterials to High In-Plane Shear
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
372
380
.
29.
Sun
,
W.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Tissues
,”
Biomechanics and Modeling in Mechanobiology
(in press).
30.
Grunkemeier
,
G.
,
Wu
,
Y.
, and
Jin
,
R.
, 2002, “
Statistical Analysis of Heart Valve Outcomes
,”
J. Heart Valve Dis.
0966-8519,
11
, Suppl 1, pp.
S2
S7
.
31.
Iyengar
,
A. K. S.
,
Sugimoto
,
H.
,
Smith
,
D. B.
, and
Sacks
,
M. S.
, 2001, “
Dynamic In Vitro Quantification of Bioprosthetic Heart Valve Leaflet Motion using Structured Light Projection
,”
Ann. Biomed. Eng.
0090-6964,
29
(
11
), pp.
963
973
.
32.
Sacks
,
M. S.
,
Chuong
,
C. J.
,
Templeton
,
G. H.
, and
Peshock
,
R.
, 1993, “
In Vivo 3-D Reconstruction and Geometric Characterization of the Right Ventricular Free Wall
,”
Ann. Biomed. Eng.
0090-6964,
21
, pp.
263
275
.
33.
Sacks
,
M. S.
, and
Smith
,
D. B.
, 1998, “
Effects of Accelerated Testing on Porcine Bioprosthetic Heart Valve Fiber Architecture
,”
Biomaterials
0142-9612,
19
(
11–12
), pp.
1027
1036
.
34.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1998, “
The Aortic Valve Microstructure: Effects of Transvalvular Pressure
,”
J. Biomed. Mater. Res.
0021-9304,
41
(
1
), pp.
131
141
.
35.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
, 1997, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
0090-6964,
25
(
4
), pp.
678
689
.
36.
Fung
,
Y. C.
,
Biomechanics: Mechanical Properties of Living Tissues
, 1993
2nd ed.
,
Springer Verlag
, New York, p.
568
.
37.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
0374-3535,
61
, pp.
199
246
.
38.
Hildebrand
,
F.
, 1980, Advanced Calculus for Applications.
39.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1988,
Numerical Receipes in C
,
Cambridge University Press
, Cambridge, p.
735
.
40.
Mirnajafi
,
A.
,
Raymer
,
J.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
, 2005, “
The Effects of Collagen Fiber Orientation on the Flexural Properties of Pericardial Heterograft Biomaterials
,”
Biomaterials
0142-9612,
26
(
7
), pp.
795
804
.
41.
Sacks
,
M. S.
, 2003, “
Biomechanics of Native and Engineered Heart Valve Tissues
,” in
Functional Tissue Engineering
,
F.
Guilak
,
D. L.
Butler
,
S.
Goldstein
, and
F.
Mooney
, eds.,
Spring-Verlag
, New York.
42.
Schoen
,
F. J.
, and
Levy
,
R. J.
, 1999, “
Tissue Heart Valves: Current Challenges and Future Research Perspectives
,” Founder’s Award, 25th Annual Meeting of the Society for Biomaterials, Perspectives, Providence, RI, April 28–May 2, 1999,
J. Biomed. Mater. Res.
0021-9304,
47
(
4
), pp.
439
465
.
43.
Cataloglu
,
A.
,
Clark
,
R. E.
, and
Gould
,
P. L.
, 1977, “
Stress Analysis of Aortic Valve Leaflets With Smoothed Geometrical Data
,”
J. Biomech.
0021-9290,
10
, pp.
153
158
.
44.
Christie
,
C. W.
, and
Medland
,
I. C.
, 1982, “
A Non-Linear Finite Element Stress Analysis of Bioprosthetic Heart Valve
,” in
Finite Element in Biomechanics
,
R. H.
Gallager
,
B. R.
Simon
,
P. C.
Johnson
, and
J. F.
Gross
, eds.,
Wiley
, Chichester, pp.
153
179
.
45.
Hamid
,
M.
,
Sabbah
,
H.
, and
Stein
,
P.
, 1985, “
Finite Element Evaluation of Stresses on Closed Leaflets of Bioprosthetic Heart Valves With Flexible Stents
,”
Finite Elem. Anal. Design
0168-874X,
1
, pp.
213
225
.
46.
Rousseau
,
E.
,
van Steenhoven
,
A.
, and
Janssen
,
J.
, 1988, “
A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis
,”
J. Biomech.
0021-9290,
21
(
7
), pp.
545
562
.
47.
Gloeckner
,
D.
,
Billiar
,
K.
, and
Sacks
,
M.
, 1998, “
The Bending Behavior of Fixed Porcine Aortic Cusp
,” in
Third World Congress of Biomechanics
,
Hokaiddo
, Japan.
48.
Thornton
,
M. A.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 1997, “
Three-Dimensional Stress Analysis of Polypropylene Leaflets for Prosthetic Heart Valves
,”
Med. Eng. Phys.
1350-4533,
19
(
6
), pp.
588
597
.
49.
Gabbay
,
S.
,
Bortolotti
,
U.
,
Wasserman
,
F.
,
Tindel
,
N.
,
Factor
,
S. M.
, and
Frater
,
R. W. M.
, 1984, “
Long-Term Follow Up of the Ionescu-Shiley Mitral Pericardial Xenograft
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
8
, pp.
758
763
.
50.
Trowbridge
,
E. A.
, and
Crofts
,
C. E.
, 1987, “
Pericardial Heterograft Valves: An Assessment of Leaflet Stresses and Their Implications for Heart Valve Design
,”
ASME J. Biomech. Eng.
0148-0731,
9
, pp.
345
355
.
51.
Moore
,
M.
,
Phillips
,
R.
,
McIlroy
,
B.
,
Walley
,
W.
, and
Hendry
,
P.
, 1998, “
Evaluation of Porcine Valves Prepared by Dye-Mediated Photooxidation
,”
Ann. Thorac. Surg.
0003-4975,
66
, pp.
S245
S246
.
52.
Gloeckner
,
D. C.
,
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1999, “
Effects of Mechanical Fatigue on the Bending Properties of the Porcine Bioprosthetic Heart Valve
,”
ASAIO J.
1058-2916,
45
(
1
), pp.
59
63
.
53.
Patterson
,
E. A.
,
Howard
,
I. C.
, and
Thornton
,
M. A.
, 1996, “
A Comparative Study of Linear and Nonlinear Simulations of the Leaflets in a Bioprosthetic Heart Valve During the Cardiac Cycle
,”
J. Med. Eng. Technol.
0309-1902,
20
(
3
), pp.
95
108
.
54.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 1999, “
Mechanisms of Aortic Valve Incompetence in Aging: A Finite Element Model
,”
J. Heart Valve Dis.
0966-8519,
8
(
2
), pp.
149
156
.
55.
Grande
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
, 2000, “
Mechanisms of Aortic Valve Incompetence: Finite Element Modeling of Aortic Root Dilatation
,”
Ann. Thorac. Surg.
0003-4975,
69
(
6
), pp.
1851
1857
.
56.
Cacciola
,
G.
,
Peters
,
G. W.
, and
Baaijens
,
F. P.
, 2000, “
A Synthetic Fiber-Reinforced Stentless Heart Valve
,”
J. Biomech.
0021-9290,
33
(
6
), pp.
653
658
.
57.
Driessen
,
N. J.
,
Boerboom
,
R. A.
,
Huyghe
,
J. M.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2003, “
Computational Analyses of Mechanically Induced Collagen Fiber Remodeling in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
549
557
.
58.
Driessen
,
N. J.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
, 2005, “
Improved Prediction of the Collagen Fiber Architecture in the Aortic Heart Valve
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
329
336
.
59.
Einstein
,
D. R.
,
Kunzelman
,
K. S.
,
Reinhall
,
P. G.
,
Nicosia
,
M. A.
, and
Cochran
,
R. P.
, 2005, “
The Relationship of Normal and Abnormal Microstructural Proliferation to the Mitral Valve Closure Sound
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
134
147
.
You do not currently have access to this content.