The long term patency of end-to-side peripheral artery bypasses are low due to failure of the graft generally at the distal end of the bypass. Both material mismatch between the graft and the host artery and junction hemodynamics are cited as being major factors in disease formation at the junction. This study uses experimental methods to investigate the major differences in fluid dynamics and wall mechanics at the proximal and distal ends for rigid and compliant bypass grafts. Injection moulding was used to produce idealized transparent and compliant models of the graft/artery junction configuration. An ePTFE graft was then used to stiffen one of the models. These models were then investigated using two-dimensional video extensometry and one-dimensional laser Doppler anemometry to determine the junction deformations and fluid velocity profiles for the rigid and complaint graft anastomotic junctions. Junction strains were evaluated and generally found to be under 5% with a peak stain measured in the stiff graft model junction of 8.3% at 100mmHg applied pressure. Hemodynamic results were found to yield up to 40% difference in fluid velocities for the stiff/compliant comparison but up to 80% for the proximal/distal end comparisons. Similar strain conditions were assumed for the proximal and distal models while significant differences were noted in their associated hemodynamic changes. In contrasting the fluid dynamics and wall mechanics for the proximal and distal anastomoses, it is evident from the results of this study, that junction hemodynamics are the more variable factor.

1.
Ballyk
,
P. D.
,
Walsh
,
C.
,
Butany
,
J.
, and
Ojha
,
M.
, 1998, “
Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-line Stresses
,”
J. Biomech.
0021-9290,
31
, pp.
229
237
.
2.
Fei
,
D. Y.
,
Thomas
,
J. D.
, and
Rittgers
,
S. E.
, 1994, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model,”
J. Biomech. Eng.
0148-0731,
116
, pp.
331
336
.
3.
Velinovic
,
M. M.
,
Davidovic
,
B. L.
,
Lotina
,
I. S.
,
Vranes
,
R. M.
,
Djukic
,
L. P.
,
Arsov
,
J. V.
,
Ristic
,
V. M.
,
Kocica
,
J. M.
, and
Petrovic
,
L. P.
, 2000, “
Complications of Operative Treatment of Injuries of Peripheral Arteries
,”
Cardiovasc. Surg.
0967-2109,
8
(
4
), pp.
256
264
.
4.
Madiba
,
T. E.
,
Mars
,
M.
, and
Robbs
,
J. V.
, 1997, “
Choosing the Proximal Anastomosis in Aortobifemoral Bypass
,”
Br. J. Surg.
0007-1323,
84
(
10
), pp.
1416
1418
.
5.
Kute
,
S. M.
, and
Vorp
,
D. A.
, 2001, “
The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
277
283
.
6.
Treiman
,
G. S.
,
Ashrafi
,
A.
, and
Lawrence
,
P. F.
, 2000, “
Incidentally Detected Stenoses Proximal to Grafts Originating Below the Common Femoral Artery: Do they Affect Graft Patency or Warrant Repair in Asymptomatic Patients?
,”
J. Vasc. Surg.
0741-5214,
32
(
6
), pp.
1180
1189
.
7.
Gentile
,
A. T.
,
Mills
,
J. L.
,
Gooden
,
M. A.
,
Hagerty
,
R. D.
,
Berman
,
S. S.
,
Hughes
,
J. D.
,
Kleinert
,
L. B.
, and
Williams
,
S. K.
, 1998, “
Vein Patching Reduces Neointimal Thickening Associated with Prosthetic Graft Implantation
,”
Am. J. Surg.
0002-9610,
176
(
6
), pp.
601
607
.
8.
Clark
,
R. E.
,
Apostolou
,
S.
, and
Kardos
,
J. L.
, 1976, “
Mismatch of Mechanical Properties as a Cause of Arterial Prosthesis Thrombosis
,”
Surg. Forum
0071-8041,
27
, pp.
208
210
.
9.
Loth
,
F.
,
Jones
,
S. A.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Nassar
,
R. F.
,
Glagov
,
S.
, and
Bassiouny
,
H. S.
, 2002, “
Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at eP.T.FE End-to-Side Arterial Anastomoses
,”
J. Biomech. Eng.
0148-0731,
124
, pp.
44
51
.
10.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Trubel
,
W.
, and
Schima
,
H.
, 1996, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-side Anastomoses and Correlation to Intimal Hyperplasia
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1297
1308
.
11.
Fatemi
,
R. S.
, and
Rittgers
,
S. E.
, 1994, “
Derivation of Shear Rates from Near-wall LDA Measurements under Steady and Pulsatile Flow Conditions
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
361
367
.
12.
Leuprecht
,
A.
,
Perktold
,
K.
,
Prosi
,
M.
,
Berk
,
T.
,
Trubel
,
W.
, and
Schima
,
H.
, 2002, “
Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-side Anastomoses of Bypass Grafts
,”
J. Biomech.
0021-9290,
35
, pp.
225
236
.
13.
Lemson
,
M. S.
,
Tordoir
,
J. H. M.
,
Daemen
,
M. J. A. P.
, and
Kitslaar
,
P. J. E. H. M.
, 2000, “
Intimal Hyperplasia in Vascular Grafts
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
19
, pp.
336
350
.
14.
Sottiurai
,
V. S.
,
Yao
,
J. S. T.
,
Flinn
,
W. R.
, and
Batson
,
R. C.
, 1983, “
Intimal Hyperplasia and Neointima: An Ultrastructural Analysis of Thrombosed Grafts in Humans
,”
Surgery (St. Louis)
0039-6060,
93
, pp.
809
817
.
15.
Sottiurai
,
V. S.
,
Yao
,
J. S.
,
Batson
,
R. C.
,
Sue
,
S. L.
,
Jones
,
R.
, and
Nakamura
,
Y. A.
, 1989, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
0890-5096,
3
, pp.
26
33
.
16.
Henry
,
F. S.
,
Collins
,
M. W.
,
Hughes
,
P. E.
, and
How
,
T. V.
, 1996, “
Numerical Investigation of Steady Flow in Proximal and Distal End-to-side Anastomoses
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
302
310
.
17.
O’Brien
,
T.
,
Walsh
,
M.
, and
McGloughlin
,
T.
, 2005, “
On Reducing Abnormal Hemodynamics in the Femoral End-to-side Anastomosis: the Influence of Mechanical Factors
,”
Ann. Biomed. Eng.
0090-6964,
33
(
3
), pp.
310
322
.
18.
Salzar
,
R. S.
,
Thubrikar
,
M. J.
, and
Eppink
,
R. T.
, 1995, “
Pressure-induced Mechanical Stress in the Carotid Artery Bifurcation: A Possible Correlation to Atherosclerosis
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1333
1340
.
19.
Lee
,
D.
,
Su
,
J. M.
, and
Liang
,
H. Y.
, 2001, “
A Numerical Simulation of Steady Flow Fields in a Bypass Tube
,”
J. Biomech.
0021-9290,
34
, pp.
1407
1416
.
20.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Prakash
,
S.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 1999, “
A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
265
272
.
21.
Hughes
,
P. E.
, and
How
,
T. V.
, 1995, “
Flow Structure at the Proximal Side-to-End Anastomosis: Influence of Geometry and Flow Division
,”
J. Biomech. Eng.
0148-0731,
117
, pp.
224
236
.
22.
Walsh
,
M.
,
McGloughlin
,
T.
,
Liepsch
,
D. W.
,
O Brien
,
T.
,
Morris
,
L.
, and
Ansari
,
A. R.
, 2003, “
On Using Experimentally Estimated Wall Shear Stresses to Validate Numerically Predicted Results
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
(
H
), pp.
77
90
.
23.
Liepsch
,
D. W.
,
Moavec
,
S. T.
, and
Baumgart
,
R.
, 1992, “
Some Flow Visualization and Laser-Doppler-Velocity Measurements in a True-to-scale Elastic Model of a Human Aortic Arch—A New Model Technique
,”
Biorheology
0006-355X,
29
, pp.
563
580
.
24.
Deters
,
O. J.
,
Bargeron
,
C. B.
,
Mark
,
F. F.
, and
Friedman
,
M. H.
, 1986, “
Measurement of Wall Motion and Wall Shear in a Compliant Arterial Cast
,”
J. Biomech. Eng.
0148-0731,
108
, pp.
355
358
.
25.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
, 2003, “
Particle-Hemodynamics Modeling of the Distal End-to-side Femoral Bypass: Effects of Graft Caliber and Graft-end Cut
,”
Med. Eng. Phys.
1350-4533,
25
(
10
), pp.
843
858
.
26.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
, 1998, “
Finite Element Modelling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
155
196
.
27.
Friedman
,
M. H.
,
Bargeron
,
C. B.
,
Duncan
,
D. D.
,
Hutchins
,
G. M.
, and
Mark
,
F. F.
, 1992, “
Effects of Arterial Compliance and Non-Newtonian Rheology on Correlations between Intimal Thickness and Wall Shear
,”
J. Biomech. Eng.
0148-0731,
114
, pp.
317
320
.
28.
Anayiotos
,
A. S.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Glagov
,
S.
, and
Zarins
,
C. K.
, 1994, “
Shear Stress at a Compliant Model of the Human Carotid Bifurcation
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
98
106
.
29.
Perktold
,
K.
,
Hofer
,
M.
,
Rappitsch
,
G.
,
Loew
,
M.
,
Kuban
,
B. D.
, and
Friedman
,
M. H.
, 1998, “
Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch
,”
J. Biomech.
0021-9290,
31
, pp.
217
228
.
30.
Thubrikar
,
M. J.
, and
Robicsek
,
F.
, 1997, “
The Role of Arterial Mechanics in Atherosclerosis
,”
Atherosclerosis
0021-9150,
134
(
1–2
),
95
.
You do not currently have access to this content.