Existing standards for the preclinical testing of femoral hip implants have been successful in the objective of guaranteeing the implant’s fatigue strength. There is a need for an experimental test which could ensure prostheses were not susceptible to aseptic loosening. In this study we measure the relative movement between the prosthesis and the bone of four different cemented femoral component designs in in vitro tests. The aim is to determine if differences can be distinguished and whether the differences correlate with clinical performance. The four designs are the Charnley (DePuy International Ltd., UK), the Exeter (Stryker Osteonics Howmedica Corp., USA), the Lubinus SPII (Waldemar-Link GmbH, Germany), and the Müller Curved (JRI Ltd, UK). Five tests were carried out for each femoral component type, giving a total of 20 tests, and their permanent relative displacement (termed migration) and recoverable (i.e., elastic) relative displacement (termed inducible displacement) monitored over one million loading cycles. Considerable variation occurred in the tests. Nonetheless, most femoral components migrated medially, posteriorly, and distally. Most also rotated into varus. Translations of the Charnley (64microns) and Lubinus (67microns) implants were less than the Müller (72microns) and Exeter (94microns) implants, but this difference is not statistically significant. Most of the femoral components had rapid early migration followed by slower steady-state migration. With regard to the steady state inducible displacements of the prostheses, those of the Charnley, Exeter, and Lubinus decreased or were stable with respect to time, whilst those of the Müller typically increased with respect to time. It is concluded that migration is not a suitable basis for in vitro comparison of prosthesis designs. However, inducible displacement trends provide a clinically comparable performance ranking.

1.
Murray
,
D. W.
,
Carr
,
A. J.
, and
Bulstrode
,
C. J.
, 1995, “
Which Primary Total Hip Replacement?
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77B
, pp.
520
526
.
2.
Trick
,
L. W.
, 2001, “
The Total Guide to Total Primary Hips
,”
Orthopedics
0147-7447,
7
(
1
), pp.
49
68
.
3.
Faulkner
,
A.
,
Kennedy
,
L. G.
,
Baxter
,
K.
,
Donovan
,
J.
,
Wilkinson
,
M.
, and
Bevan
,
G.
, 1998, “
Effectiveness of Hip Prostheses in Primary Total Hip Replacement: A Critical Review of Evidence and an Economic Model
,”
Health Technol. Assess
1366-5278,
2
(
6
), pp.
1
129
.
4.
Huiskes
,
R.
, 1993, “
Failed Innovation in Total Hip Replacement: Diagnosis and Proposals for a Cure
,”
Acta Orthop. Scand.
0001-6470,
64
(
6
), pp.
699
716
.
5.
Paul
,
J. P.
, 1997, “
Development of Standards for Orthopaedic Implants
,” in
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
211
(
11
), pp.
119
126
.
6.
Malchau
,
H.
, and
Herberts
,
P.
, 1998, “
Prognosis of Total Hip Replacement: Revision and Rerevision Rate in THR-A Revision-Risk Study of 148,359 Primary Operations
,” Technical Report, Department of Orthopaedics,
University of Göteborg
, Sweden. Scientific exhibition presented at the 65th annual meeting of the American Academy of Orthopaedic Surgeons.
7.
Malchau
,
H.
,
Herberts
,
P.
,
Garellick
,
G.
,
Söderman
,
P.
, and
Eisler
,
T.
, 2002, “
Prognosis of Total Hip Replacement: Update of Results and Risk-Ratio Analysis for Revision and Rerevision from the Swedish National Hip Arthroplasty Register 1979–2000
,” Technical Report, Department of Orthopaedics,
Göteborg University
, Sweden. Scientific exhibition presented at the 69th Annual Meeting of the American Academy of Orthopaedic Surgeons, Dallas.
8.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O’Connor
,
D.
,
Haire
,
T.
, and
Harris
,
W. H.
, 1991, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthoplasties
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
73B
(
4
), pp.
551
558
.
9.
Kärrholm
,
J.
,
Borssen
,
B.
,
Lowenhielm
,
G.
, and
Snorrason
,
F.
, 1994, “
Does Early Micromotion of Femoral Stem Prostheses Matter?
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
76B
(
6
), pp.
912
917
.
10.
Freeman
,
M. A. R.
, and
Plante-Bordeneuve
,
P.
, 1994, “
Early Migration and Late Aseptic Failure of Proximal Femoral Prostheses
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
76B
(
3
), pp.
432
438
.
11.
Walker
,
P. S.
,
Mai
,
S. F.
,
Cobb
,
A. G.
,
Bentley
,
G.
, and
Hua
,
J.
, 1995, “
Prediction of Clinical Outcome of THR from Migration Measurements on Standard Radiographs
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77B
, pp.
705
714
.
12.
Burke
,
D. W.
,
O’Connor
,
D.
,
Zalenski
,
E. B.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1991, “
Micromotion of Cemented and Uncemented Femoral Components
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
73B
(
1
), pp.
33
37
.
13.
Doehring
,
T. C.
,
Rubash
,
H. E.
, and
Dore
,
D. E.
, 1999, “
Micromotion Measurements With Hip Center and Modular Neck Length Alterations
,”
Clin. Orthop. Relat. Res.
0009-921X,
362
, pp.
230
239
.
14.
Kassi
,
J.-P.
,
Heller
,
M. O. W.
,
Stoeckle
,
U.
,
Perka
,
C.
, and
Duda
,
G. N.
, 2002, “
Muscle Activity is Essential for a Realistic Preclinical Evaluation of Primary Stability in THA
,”
Bedzinski
,
R.
,
Pezowicz
,
C.
, and
Scigala
,
K.
, eds.,
Acta of Bioengineering and Biomechanics: Proceedings of the 13th Conference of European Society of Biomechanics
. European Society of Biomechanics, p.
47
.
15.
Speirs
,
A. D.
,
Slomczykowski
,
M. A.
,
Orr
,
T. E.
,
Siebenrock
,
K.
, and
Nolte
,
L.-P.
, 2000, “
Three-Dimensional Measurement of Cemented Femoral Stem Stability: An in vitro Cadaver Study
,”
Clin. Biomech.
0191-7870,
15
(
4
), pp.
248
255
.
16.
Liu
,
C.
,
Green
,
S. M.
,
Watkins
,
N. D.
,
Gregg
,
P. J.
, and
McCaskie
,
A. W.
, 2003, “
A Preliminary Hip Joint Simulator Study of the Migration of a Cemented Femoral Stem
,” in
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
(
2
), pp.
127
135
.
17.
Maher
,
S. A.
,
Prendergast
,
P. J.
, and
Lyons
,
C. G.
, 2001, “
Measurement of the Migration of a Cemented Hip Prosthesis in an in vitro Test
,”
Clin. Biomech.
0191-7870,
16
(
4
), pp.
307
314
.
18.
Maher
,
S. A.
, and
Prendergast
,
P. J.
, 2002, “
Discriminating the Loosening Behavior of Cemented Hip Prostheses Using Measurements of Migration and Inducible Displacement
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
257
265
.
19.
Britton
,
J. R.
,
Walsh
,
L. A.
, and
Prendergast
,
P. J.
, 2003, “
Mechanical Simulation of Muscle Loading on the Proximal Femur: Analysis of Cemented Femoral Component Migration With and Without Muscle Loading
,”
Clin. Biomech.
0191-7870,
18
(
7
), pp.
637
646
.
20.
Cristofolini
,
L.
,
Teutonico
,
A. S.
,
Monti
,
L.
,
Cappello
,
A.
, and
Toni
,
A.
, 2003, “
Comparative in vitro Study on the Long Term Performance of Cemented Hip Stems: Validation of a Protocol to Discriminate Between “Good” and “Bad” Designs
,”
J. Biomech.
0021-9290,
36
(
11
), pp.
1603
1615
.
21.
Sutherland
,
C. J.
,
Wilde
,
A. H.
,
Borden
,
L. S.
, and
Marks
,
K. E.
, 1982, “
A Ten-Year Follow-Up of One Hundred Consecutive Müller Curved Stem Total Hip-Replacement Arthoplasties
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64A
(
7
), pp.
970
981
.
22.
Önsten
,
I.
,
Åkesson
,
K.
,
Besjakov
,
J.
, and
Obrant
,
K.
, 1995, “
Migration of the Charnley Stem in Rheumatoid Arthritis and Osteoarthritis
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
77B
(
1
), pp.
18
22
.
23.
Kärrholm
,
J.
,
Nivbrant
,
B.
,
Thanner
,
J.
,
Anderberg
,
C.
,
Borlin
,
N.
,
Herberts
,
P.
, and
Malchau
,
H.
, 2000, “
Radiostereometric Evaluation of Hip Implant Design and Surface Finish
,” Technical Report,
Departments of Orthopaedics and Computing Science at Göteborg University and Umeå University
, Sweden. Scientific exhibition presented at the 67th annual meeting of the American Academy of Orthopaedic Surgeons, Orlando, Florida.
24.
Alfaro-Adrian
,
J.
,
Gill
,
H. S.
, and
Murray
,
D. W.
, 2001, “
Should Total Hip Arthroplasty Femoral Components be Designed to Subside? A Radiostereometric Analysis Study of Charnley Elite and Exeter Stems
,”
J. Arthroplasty
0883-5403,
16
(
5
), pp.
598
606
.
25.
Szivek
,
J. A.
,
Weng
,
M.
, and
Karpman
,
R.
, 1990, “
Variability in the Torsional and Bending Response of a Commercially Available Composite Femur
,”
J. Appl. Biomater
1045-4861,
1
, pp.
183
186
.
26.
Cristofolini
,
L.
,
Viceconti
,
M.
,
Cappello
,
A.
, and
Toni
,
A.
, 1996, “
Mechanical Validation of Whole Bone Composite Femur Models
,”
J. Biomech.
0021-9290,
29
(
4
), pp.
525
535
.
27.
Maher
,
S. A.
,
Prendergast
,
P. J.
,
Reid
,
A. J.
,
Waide
,
D. V.
, and
Toni
,
A.
, 2000, “
Design and Validation of a Machine for Reproducible Precision Insertion of Femoral Hip Prostheses for Preclinical Testing
,”
J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
203
207
.
28.
Humphreys
,
P. K.
,
Orr
,
J. F.
, and
Bahrani
,
A. S.
, 1989, “
An Investigation into the Effect of Cyclic Loading and Frequency on the Temperature of PMMA Bone Cement in Hip Prostheses
,” in
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
203
(
3
), pp.
167
170
.
29.
Bergmann
,
G.
, ed., 2001, Hip98, Loading of the hip joint. Published as a cd-rom attachment to the Journal of Biomechanics, ISBN 3-9807848-0-0.
30.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns from Routine Activities
,”
J. Biomech.
0021-9290,
34
(
7
), pp.
859
871
.
31.
Heller
,
M. O.
,
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Dürselen
,
L.
,
Pohl
,
M.
,
Claes
,
L.
,
Haas
,
N. P.
, and
Duda
,
G. N.
, 2001, “
Musculo-Skeletal Loading Conditions at the Hip During Walking and Stair Climbing
,”
J. Biomech.
0021-9290,
34
(
7
), pp.
883
893
.
32.
Paul
,
J. P.
, 1997, “
Letter to the Editor-Re: Stress and Strain Distribution Within the Intact Femur: Compression or Bending? by Taylor et al.
,”
Med. Eng. Phys.
1350-4533,
19
(
1
), p.
97
.
33.
Cleveland
,
W. S.
, and
Devlin
,
S. J.
, 1988, “
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
,”
J. Am. Stat. Assoc.
0003-1291,
83
(
403
), pp.
596
610
.
34.
Zar
,
J. H.
, 1999,
Biostatistical Analysis
, 4th ed.,
Prentice-Hall
, New Jersey.
35.
Sterne
,
J. A. C.
, and
Smith
,
G. D.
, 2001, “
Sifting the Evidence—What’s Wrong with Significance Tests?
,”
Br. Med. J. (Clin Res. Ed)
0267-0623,
322
, pp.
226
231
.
36.
McCormack
,
B. A. O.
,
Prendergast
,
P. J.
, and
O’Dwyer
,
B.
, 1999, “
Fatigue of Cemented Hip Replacements Under Torsional Loads
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
22
(
1
), pp.
33
40
.
37.
Verdonschot
,
N.
,
Barink
,
M.
,
Stolk
,
J.
,
Gardeniers
,
J. W. M.
, and
Schreurs
,
B. W.
, 2002, “
Do Unloading Periods Affect Migration Characteristics of Cemented Femoral Components? An in vitro Evaluation With the Exeter Stem
,”
Acta Orthop. Belg.
0001-6462,
68
(
4
), pp.
348
355
.
38.
Waide
,
V.
,
Cristofolini
,
L.
,
Stolk
,
J.
,
Verdonschot
,
N.
,
Boogaard
,
G. J.
, and
Toni
,
A.
, 2004, “
Modelling the Fibrous Tissue Layer in Cemented Hip Replacements: Experimental and Finite Element Methods
,”
J. Biomech.
0021-9290,
37
, pp.
13
26
.
39.
Britton
,
J. R.
,
Lyons
,
C. G.
, and
Prendergast
,
P. J.
, 2004, “
Measurement of the Relative Motion Between an Implant and Bone Under Cyclic Loading
,”
Strain J. Brit. Soc. Strain Measurement
0039-2103,
40
, pp.
193
202
.
40.
Maher
,
S. A.
, 2000, “
Design and Development of a Preclinical Test for Cemented Femoral Hip Replacements
,” Ph.D. thesis, University of Dublin.
41.
Lennon
,
A. B.
, and
Prendergast
,
P. J.
, 2002, “
Residual Stress Due to Curing can Initiate Damage in Porous Bone Cement: Experimental and Theoretical Evidence
,”
J. Biomech.
0021-9290,
35
(
3
), pp.
311
321
.
42.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2000, “
On the Magnitude and Variability of the Fatigue Strength of Acrylic Bone Cement
,”
Int. J. Fatigue
0142-1123,
22
(
10
), pp.
855
864
.
43.
Lennon
,
A. B.
, 2002, “
A Stochastic Model of Damage Accumulation in Arcylic Bone Cement
,” Ph.D. thesis, University of Dublin.
44.
Dunne
,
N. J.
,
Orr
,
J. F.
,
Mushipe
,
M. T.
, and
Eveleigh
,
R.
, 2003, “
The Relationship Between Porosity and Fatigue Characteristics of Bone Cements
,”
Biomaterials
0142-9612,
24
(
2
), pp.
239
245
.
45.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2003, “
Multiaxial Failure of Orthopaedic Bone Cement: Experiments With Tubular Specimens
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
14
(
10
), pp.
857
861
.
46.
Malchau
,
H.
,
Herberts
,
P.
,
Ahnfelt
,
L.
, and
Johnell
,
O.
, 1993, “
Prognosis of Total Hip Replacements: Results from the National Register of Revised Failures 1979–1990 in Sweden: A 10year Follow-Up of 92,675 THR
,” Technical Report, Department of Orthopaedics,
University of Göteborg
, Sweden. Scientific exhibition presented at the 61st Annual Meeting of the American Academy of Orthopaedic Surgeons, San Francisco, CA.
47.
Stolk
,
J.
, 2002, “
A Computerized Preclinical Test for Cemented Hip Prostheses Based on Finite Element Techniques
,” Ph.D. thesis, University of Nijmegen.
48.
Stolk
,
J.
,
Maher
,
S. A.
,
Verdonschot
,
N.
,
Prendergast
,
P. J.
, and
Huiskes
,
R.
, 2003, “
Can Finite Element Models Detect Clinically Inferior Cemented Hip Implants?
,”
Clin. Orthop. Relat. Res.
0009-921X,
409
, pp.
138
150
.
49.
Race
,
A.
,
Miller
,
M. A.
,
Ayers
,
D. C.
, and
Mann
,
K. A.
, 2003, “
Early Cement Damage Around a Femoral Stem is Concentrated at the Cement/Bone Interface
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
489
496
.
50.
Lennon
,
A. B.
,
McCormack
,
B. A. O.
, and
Prendergast
,
P. J.
, 2003, “
The Relationship Between Cement Fatigue Damage and Implant Surface Finish in Proximal Femoral Prostheses
,”
Med. Eng. Phys.
1350-4533,
25
(
10
), pp.
833
841
.
51.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1993, “
Hip Joint Loading During Walking and Running Measured in Two Patients
,”
J. Biomech.
0021-9290,
26
(
8
), pp.
969
990
.
You do not currently have access to this content.