Knowledge of impending abdominal aortic aneurysm (AAA) rupture can help in surgical planning. Typically, aneurysm diameter is used as the indicator of rupture, but recent studies have hypothesized that pressure-induced biomechanical stress may be a better predictor. Verification of this hypothesis on a large study population with ruptured and unruptured AAA is vital if stress is to be reliably used as a clinical prognosticator for AAA rupture risk. We have developed an automated algorithm to calculate the peak stress in patient-specific AAA models. The algorithm contains a mesh refinement module, finite element analysis module, and a postprocessing visualization module. Several aspects of the methodology used are an improvement over past reported approaches. The entire analysis may be run from a single command and is completed in less than 1h with the peak wall stress recorded for statistical analysis. We have used our algorithm for stress analysis of numerous ruptured and unruptured AAA models and report some of our results here. By current estimates, peak stress in the aortic wall appears to be a better predictor of rupture than AAA diameter. Further use of our algorithm is ongoing on larger study populations to convincingly verify these findings.

1.
Thubrikar
,
M. J.
,
al-Soudi
,
J.
, and
Robicsek
,
F.
, 2001, “
Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model
,”
Ann. Vasc. Surg.
0890-5096,
15
(
3
), pp.
355
366
.
2.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
, 2000, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of its Applicability
,”
J. Biomech.
0021-9290,
33
(
4
), pp.
475
482
.
3.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
, 2000, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
31
(
4
), pp.
760
769
.
4.
Wang
,
D. H.
,
Makaroun
,
M. S.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2002, “
Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
1
7
.
5.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
, 2001, “
Fluid-Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
1350-4533,
23
(
9
), pp.
647
655
.
6.
Fillinger
,
M. F.
, 1997, “
Utility of Spiral CT in the Preoperative Eevaluation of Patients with Abdominal Aortic Aneurysms
,” in
Advances In Vascular Surgery
,
AD
,
W.
, ed.,
Mosby
, St. Louis, MO, pp.
115
131
.
7.
Fillinger
,
M. F.
, 1999, “
New Imaging Techniques in Endovascular Surgery
,”
Surg. Clin. North Am.
0039-6109,
79
(
3
), pp.
451
475
.
8.
Fillinger
,
M. F.
, 1999, “
Computed Tomography, CT Angiography and Three-Dimensional Reconstruction for the Evaluation of Vascular Disease
,” In
Rutherford’s Textbook of Vascular Surgery
,
Rb
,
R.
, ed.
5th ed.
,
W. B. Saunders
, Philadelphia, PA.
9.
Canann
,
S. A.
,
Muthukrishna
,
S. N.
, and
Phillips
,
R. K.
, 1996, “
Topological Refinement Procedures for Triangular Finite Element Meshes
,”
Eng. Comput.
0177-0667,
12
(
3–4
), pp.
243
255
.
10.
Schurink
,
G. W.
,
van Baalen
,
J. M.
,
Visser
,
M. J.
, and
van Bockel
,
J. H.
, 2000, “
Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall
,”
J. Vasc. Surg.
0741-5214,
31
(
3
), pp.
501
506
.
11.
Peattie
,
R. A.
,
Asbury
,
C. L.
,
Bluth
,
E. I.
, and
Riehle
,
T. J.
, 1996, “
Steady Flow in Models of Abdominal Aortic Aneurysms. Part II: Wall Stresses and Their Implication for in vivo Thrombosis and Rupture
,”
J. Ultrasound Med.
0278-4297,
15
(
10
), pp.
689
696
.
12.
Fillinger
,
M. F.
,
Raghavan
,
M. L.
,
Marra
,
S. P.
,
Cronenwett
,
J. L.
, and
Kennedy
,
F. E.
, 2002, “
In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk
,”
J. Vasc. Surg.
0741-5214,
36
(
3
), pp.
589
597
.
13.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
0741-5214,
27
(
4
), pp.
632
639
.
14.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 1996, “
Ex vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
0090-6964,
24
(
5
), pp.
573
582
.
15.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
, 2003, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
0741-5214,
37
(
4
), pp.
724
732
.
16.
Lederle
,
F. A.
,
Wilson
,
S. E.
,
Johnson
,
G. R.
,
Reinke
,
D. B.
,
Littooy
,
F. N.
,
Acher
,
C. W.
,
Ballard
,
D. J.
,
Messina
,
L. M.
,
Gordon
,
I. L.
,
Chute
,
E. P.
,
Krupski
,
W. C.
,
Busuttil
,
S. J.
,
Barone
,
G. W.
,
Sparks
,
S.
,
Graham
,
L. M.
,
Rapp
,
J. H.
,
Makaroun
,
M. S.
,
Moneta
,
G. L.
,
Cambria
,
R. A.
,
Makhoul
,
R. G.
,
Eton
,
D.
,
Ansel
,
H. J.
,
Freischlag
,
J. A.
, and
Bandyk
,
D.
, 2002, “
Immediate Repair Compared with Surveillance of Small Abdominal Aortic Aneurysms
,”
N. Engl. J. Med.
0028-4793,
346
(
19
), pp.
1437
1444
.
17.
The United Kingdom Small Aneurysm Trial Participants
, 2002, “
Long-Term Outcomes of Immediate Repair Compared with Surveillance of Small Abdominal Aortic Aneurysms
,”
N. Engl. J. Med.
0028-4793,
346
(
19
), pp.
1445
1452
.
18.
Owen
,
S. J.
, and
White
,
D. R.
, 2003, “
Mesh-Based Geometry
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
(
2
), pp.
375
395
.
19.
Mower
,
W. R.
, and
Quinones
,
W. J.
, 2001, “
Regarding “Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysm Wall”
,”
J. Vasc. Surg.
0741-5214,
33
(
3
), pp.
660
661
.
20.
Raghavan
,
M. L.
,
Kratzberg
,
J.
, and
da Silva
,
E. S.
, 2002, “
Experimental Investigation of the Role of Thrombus on the Pressure-Strain Relationship in Human Abdominal Aortic Aneurysm
,”
IV World Congress of Biomechanics
, Calgary, Alberta, Canada.
21.
Raghavan
,
M. L.
,
Ikeda
,
M. H.
, and
da Silva
,
E. S.
, 2002, “
Failure Strength Distribution in Abdominal Aortic Aneurysm: A Necropsy Study
,”
2002 International Mechanical Engineering Congress & Exposition
, ASME, New Orleans, LA.
22.
Marra
,
S. P.
,
Kennedy
,
F. E.
, and
Fillinger
,
M. F.
, 2002, “
Mechanical Properties Characterization of Abdominal Aortic Aneurysm Tissue Using Biaxial Testing
,”
2002 ASME International Mechanical Engineering Congress and Exposition
, ASME, New Orleans, LA.
23.
Raghavan
,
M. L.
,
Ma
,
B.
,
Kennedy
,
F. E.
,
Fillinger
,
M. F.
, and
da Silva
,
E. S.
, 2002, “
Determination of the Zero-Pressure Configuration of Cardiovascular Structures From in vivo Configuration
,”
2nd Joint Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society
, Houston, TX.
24.
Raghavan
,
M. L.
, 1998, “
Mechanical Wall Stress in Abdominal Aortic Aneurysm: Towards The Development of a Clinical Tool to Predict Aneurysm Rupture
,” Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA.
25.
Raghavan
,
M. L.
,
Kratzberg
,
J.
, and
da Silva
,
E. S.
, 2004, “
Heterogeneous, Variable Wall-Thickness Modeling of a Ruptured Abdominal Aortic Aneurysm
,”
2004 ASME International Mechanical Engineering Congress and Exposition
, Anaheim, CA.
26.
Geest
,
J. V.
,
Bohra
,
A.
,
Sun
,
W.
,
Di Martino
,
E.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Development and 3D Finite Elment Implementation of a Multiaxial Constitutive Relation for Abdominal Aortic Aneurysms
,”
2004 International Mechanical Engineering Congress and Exposition
, Anaheim, CA.
You do not currently have access to this content.