In previous biomechanical studies of the human spine, we implemented a hybrid controller to investigate load-displacement characteristics. We found that measurement errors in both position and force caused the controller to be less accurate than predicted. As an alternative to hybrid control, a fuzzy logic controller (FLC) has been developed and implemented in a robotic testing system for the human spine. An FLC is a real-time expert system that can emulate part of a human operator’s knowledge by using a set of action rules. The FLC provides simple but robust solutions that cover a wide range of system parameters and can cope with significant disturbances. It can be viewed as a heuristic and modular way of defining a nonlinear, table-based control system. In this study, an FLC is developed which uses the force difference and the change in force difference as the input parameters, and the displacement as the output parameter. A rule-table based on these parameters is designed for the controller. Experiments on a physical model composed of springs demonstrate the improved performance of the proposed method.

1.
Oxland
,
T. R.
,
Lin
,
R.-M.
, and
Panjabi
,
M. M.
, 1992, “
Three-Dimensional Mechanical Properties of the Thoracolumbar Junction
,”
J. Orthop. Res.
0736-0266,
10
, pp.
573
580
.
2.
Abumi
,
K.
,
Panjabi
,
M. M.
,
Kramer
,
K. M.
,
Duranceau
,
J.
,
Oxland
,
T.
, and
Crisco
,
J. J.
, 1990, “
Biomechanical Evaluation of the Lumbar Spinal Stability after Graded Facetectomies
,”
Spine
0362-2436,
15
,
1142
1147
.
3.
Brodke
,
B. S.
,
Gollogly
,
S.
,
Mohr
,
R. A.
,
Nguyen
,
B.-K.
,
Dailey
,
A. T.
, and
Bachus
,
K. N.
, 2001, “
Dynamic Cervical Plates: Biomechanical Evaluation of Load Sharing and Stiffness
,”
Spine
0362-2436,
26
, pp.
1324
1329
.
4.
Tencer
,
A. F.
,
Ahmed
,
A. M.
, and
Burke
,
D. L.
, 1982, “
Some Static Mechanical Properties of the Lumbar Interverebral Joint, Intact and Injured
,”
ASME J. Biomech. Eng.
0148-0731
104
, pp.
193
201
.
5.
Panjabi
,
M. M.
, 1988, “
Biomechanical Evaluation of Spinal Fixation Devices: Part 1. A Conceptual Framework
,”
Spine
0362-2436,
13
, pp.
1129
1134
.
6.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
Robot dynamics and control
,
John Wiley & Sons
, New York, 1989.
7.
Koivo
,
A. J.
,
Fundamentals for Control of Robotic Manipulators
,
John Wiley & Sons
, New York, 1989.
8.
Gilbertson
,
L. G.
,
Doehring
,
T. C.
, and
Kang
,
J. D.
, 2000, “
New Methods to Study Lumbar Spine Biomechanics: Delineation of In-vitro Load-Displacement Characteristics by Using a Robotic∕UFS Testing System with Hybrid Control
,”
Oper. Tech. Orthop.
1048-6666,
10
, pp.
246
253
.
9.
Doehring
,
T. C.
, “
Delineation of In-vitro Lumbar Spine Structural Properties Using a Robotic∕UFS Testing System with Hybrid Control: Experiments and Analytical Simulation
,” Doctoral Dissertation, University of Pittsburgh, Pittsburgh, 2000.
10.
Goel
,
V. K.
,
Wilder
,
D. G.
,
Pope
,
M. H.
, and
Edwards
,
W. T.
, 1995 “
Controversy: Biomechanical Testing of the Spine Load-Controlled versus Displacement Controlled Analysis
,”
Spine
0362-2436,
20
, pp.
2354
2357
.
11.
Byung
,
K. Y.
, and
Woon
,
C. H.
, 2000., “
Adaptive Control of Robot Manipulator Using Fuzzy Compensator
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
8
, pp.
186
199
.
12.
Ham
,
C.
,
Qu
,
Z.
, and
Johnson
,
R.
, 2000, “
Robust Fuzzy Control for Robot Manipulators
,”
IEE Proc.: Control Theory Appl.
1350-2379,
147
, pp.
212
216
.
13.
Cholewichi
,
J.
,
Crisco
,
J. J.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Panjabi
,
M. M.
, 1996 “
Effects of Posture and Structure on Three-Dimensional Coupled Rotation in the Lumbar Spine: A Biomechanical Study
,”
Spine
0362-2436,
21
, pp.
2421
2428
.
14.
Kumar
,
N.
,
Kukreti
,
S.
,
Ishaque
,
M.
,
Sengupta
,
D. K.
, and
Mulholland
,
R. C.
, 2002, “
Functional Anatomy of the Deer Spine: An Appropriate Biomechanical Model for the Human Spine
,”
Anat. Rec.
0003-276X,
266
, pp.
108
117
.
15.
Admas
,
M.
, and
Hutton
,
W.
, 1981, “
The Relevance of Torsion to the Mechanical Derangement of the Lumbar Spine
,”
Spine
0362-2436,
6
, pp.
241
248
.
16.
Shu
,
I. H.
,
Eom
,
K. S.
,
Yeo
,
H. J.
, and
Oh
,
S.-R.
, 1995, “
Fuzzy Adaptive Force Control of Industrial Robot Manipulators with Position Servos
,”
Mechatronics
0957-4158,
5
, No.
8
, pp.
899
918
.
17.
Lin
,
S.-T.
, and
Huang
,
A.-K.
, 1997, “
Position-Based Fuzzy Force Control for Dual Industrial Robots
,”
J. Intell. Robotic Syst.
0921-0296,
19
, pp.
393
409
.
18.
Er
,
M. J.
, and
Chin
,
S. H.
2000, “
Hybrid Adaptive Fuzzy Controllers of Robot Manipulators with Bounds Estimation
,”
IEEE Trans. Ind. Electron.
0278-0046,
47
, No.
5
, pp.
1151
1160
.
19.
Fukuda
,
T.
, and
Kubota
,
N.
, 1999, “
An Intelligent Robotic System Based on a Fuzzy Approach
,”
Proc. IEEE
0018-9219,
87
, No.
9
, pp.
1448
1470
.
20.
Tsai
,
C.-H.
,
Wang
,
C.-H.
, and
Lin
,
W.-S.
, 2000, “
Robust Fuzzy Model-Following Control of Robot Manipulators
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
8
, No.
4
, pp.
462
469
.
21.
Kruse
,
R.
,
Gebhardt
,
J.
, and
Klawonn
,
F.
, 1994,
Foundations of Fuzzy Systems
,
John Wiley & Sons Ltd.
, New York.
22.
Patyra
,
M. J.
, and
Mlynek
,
D. M.
, 1996,
Fuzzy logic implementation and applications
,
John Wiley and Sons Ltd. and B. G. Tebner
, New York.
23.
Yager
,
R. R.
, and
Zadeh
,
L. A.
, 1992,
An introduction to fuzzy logic applications in intelligent systems
,
Kluwer Academic Publishers
, Boston.
You do not currently have access to this content.