Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow.

1.
Yoganathan
,
A. P.
,
Corcoran
,
W. H.
, and
Harrison
,
E. C.
, 1979, “
In Vivo Measurements in the Vicinity of Aortic Prosthesis
,”
J. Biomech.
0021-9290,
12
, pp.
135
152
.
2.
Figliola
,
R. S.
, and
Mueller
,
T. J.
, 1981, “
On the Hemolytic and Thrombogenic Potential of Occluder Prosthetic Heart Valves From In-Vitro Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
83
90
.
3.
Chandran
,
K. B.
,
Cabell
,
G. N.
, and
Khalighi
,
B.
, 1983, “
Laser Anemometry Measurements of Pulsatile Flow Past Aortic Valve Prosthesis
,”
J. Biomech.
0021-9290,
16
(
10
), pp.
865
873
.
4.
Yoganathan
,
A. P.
,
Woo
,
Y.
, and
Sung
,
H.
, 1986, “
Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses
,”
J. Biomech.
0021-9290,
19
, pp.
433
442
.
5.
Fatemi
,
R.
, and
Chandran
,
K. B.
, 1989, “
An In Vitro Comparative Study of St. Jude Medical and Edwards-Duromedics Bileaflet Valves Using Laser Anemometry
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
298
302
.
6.
Schoephoerster
,
R.
, and
Chandran
,
K.
, 1991, “
Velocity and Turbulence Measurements Past Mitral-Valve Prostheses in a Model Left-Ventricle
,”
J. Biomech.
0021-9290,
24
(
7
), pp.
549
562
.
7.
Walker
,
P.
, and
Yoganathan
,
A. P.
, 1992, “
In Vitro Pulsatile Flow Hemodynamics of Five Mechanical Aortic Heart Valve Prostheses
,”
Eur. J. Cardiothorac Surg.
1010-7940,
6
, (Suppl. 1), pp.
S113
S123
.
8.
Fontaine
,
A.
,
He
,
S.
, and
Stadter
,
R.
, 1996, “
In Vitro Assessment of Prosthetic Valve Funciton in Mitral Valve Replacement With Chordal Preservation Techniques
,”
J. Heart Valve Dis.
0966-8519,
5
(
2
), pp.
186
198
.
9.
Liu
,
J. S.
,
Lu
,
P. C.
, and
Chu
,
S. H.
, 2000, “
Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
118
124
.
10.
Lim
,
W.
,
Chew
,
Y.
,
Chew
,
T.
, and
Low
,
H.
, 1998, “
Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation With PIV Techniques
,”
J. Biomech.
0021-9290,
31
(
5
), pp.
411
421
.
11.
Browne
,
P.
,
Ramuzat
,
A.
,
Saxena
,
R.
, and
Yoganathan
,
A.
, 2000, “
Experimental Investigation of the Steady Flow Downstream of the St. Jude Bileaflet Heart Valve: A Comparison Between Laser Doppler Velocimetry and Particle Image Velocimetry Techniques
,”
Ann. Biomed. Eng.
0090-6964,
28
(
1
), pp.
39
47
.
12.
Subramanian
,
A.
,
Mu
,
H.
,
Kadambi
,
J.
,
Wernet
,
M.
,
Brendzel
,
A.
, and
Harasaki
,
H.
, 2000, “
Particle Image Velocimetry Investigation of Intra-Valvular Flow Fields of a Bileaflet Mechanical Heart Valve in a Pulsatile Flow
,”
J. Heart Valve Dis.
0966-8519,
9
(
5
), pp.
721
731
.
13.
Zhao
,
J.
,
Shi
,
Y.
,
Yeo
,
T.
, and
Hwang
,
N.
, 2001, “
Digital Particle Image Velocimetry Investigation of the Pulsating Flow Around a Simplified 2-D Model of a Bileaflet Heart Valve
,”
J. Heart Valve Dis.
0966-8519,
10
(
2
), pp.
239
253
.
14.
Marassi
,
M.
,
Castellini
,
P.
,
Pinotti
,
M.
, and
Scalise
,
L.
, 2004, “
Cardiac Valve Prosthesis Flow Performances Measured by 2D and 3D-Stereo Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
36
(
1
), pp.
176
186
.
15.
Peskin
,
C. S.
, 1972, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
0021-9991,
10
, pp.
252
271
.
16.
Huang
,
Z. J.
,
Merkle
,
C. L.
,
Abdallah
,
S.
, and
Tarbell
,
J. M.
, 1994, “
Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
391
402
.
17.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
, 1994, “
An Initial Parametric Study on Fluid Flow Through Bileaflet Mechanical Heart Valves Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
208
, pp.
63
72
.
18.
Bluestein
,
D.
,
Li
,
Y.
, and
Krukenkamp
,
I.
, 2002, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1533
1540
.
19.
Rosenfeld
,
M.
,
Avrahami
,
I.
, and
Einav
,
S.
, 2002, “
Unsteady Effects on the Flow Across Tilting Disk Valves
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
21
29
.
20.
King
,
M. J.
,
Corden
,
J.
,
David
,
T.
, and
Fisher
,
J.
, 1996, “
A Three-Dimensional, Time-Dependent Analysis of Flow Through a Bileaflet Mechanical Heart Valve: Comparison of Experimental and Numerical Results
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
609
618
.
21.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
, 1997, “
Three-Dimensional Study of the Effect of Two Leaflet Opening Angles on the Time-Dependent Flow Through a Bileaflet Mechanical Heart Valve
,”
Med. Eng. Phys.
1350-4533,
19
(
5
), pp.
235
241
.
22.
Kelly
,
S.
, 2002, “
Computational Fluid Dynamics Insights in the Design of Mechanical Heart Valves
,”
Artif. Organs
0160-564X,
26
(
7
), pp.
608
613
.
23.
Ge
,
L.
,
Jones
,
S.
,
Sotiropoulos
,
F.
,
Healy
,
T.
, and
Yoganathan
,
A.
, 2003, “
Numerical Simulation of Flow in Mechanical Heart Valves: Grid Resolution and the Assumption of Flow Symmetry
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
5
), pp.
709
718
.
24.
Stevenson
,
D.
,
Yoganathan
,
A.
, and
Williams
,
F.
, 1985, “
Numerical-Simulation of Steady Turbulent-Flow Through Trileaflet Aortic Heart-Valves. 2. Results on 5 Models
,”
J. Biomech.
0021-9290,
18
(
12
), p.
909
.
25.
Stevenson
,
D.
, and
Yoganathan
,
A.
, 1985, “
Numerical-Simulation of Steady Turbulent-Flow Through Trileaflet Aortic Heart-Valves. 1. Computational Scheme and Methodology
,”
J. Biomech.
0021-9290,
18
(
12
), pp.
899
907
.
26.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
, 1997, “
Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach
,”
C.
Liu
and
Z.
Liu
, eds., “
First AFOSR International Conference on DNS/LES
,” Ruston, LA.
27.
Jones
,
R.
,
Harvey
,
A.
, and
Acharya
,
S.
, 2001, “
Two-Equation Turbulence Modeling for Impeller Stirred Tanks
,”
ASME J. Fluids Eng.
0098-2202,
123
(
3
), pp.
640
648
.
28.
Flynn
,
M.
, and
Eisner
,
A.
, 2004, “
Verification and Validation Studies of the Time-Averaged Velocity Field in the Very Near-Wake of a Finite Elliptical Cylinder
,”
Fluid Dyn. Res.
0169-5983,
34
(
4
), pp.
273
288
.
29.
Spalart
,
P. R.
, 2000, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
0142-727X,
21
(
3
), pp.
252
263
.
30.
Ge
,
L.
, 2004, “
Numerical Simulation of 3D, Complex, Turbulent Flows With Coherent Unsteady Structures: From Hydraulics to Cardiovascular Fluid Mechanics
,” Ph.D. thesis, Georgia Institute of Technology.
31.
Tang
,
H. S.
,
Jones
,
S. C.
, and
Sotiropoulos
,
F.
, 2003, “
An Overset-Grid Method for 3D Unsteady Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
191
(
2
), pp.
567
600
.
32.
Gutmark
,
E. J.
, and
Grinstein
,
F. F.
, 1999, “
Flow Control With Noncircular Jets
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
239
272
.
You do not currently have access to this content.