Thermal preconditioning protocols for cardiac cells were identified which produce elevated HSP70 levels while maintaining high cell viability. Bovine aortic endothelial cells were heated with a water bath at temperatures ranging from for periods of . Thermal stimulation protocols were determined which induce HSP70 expression levels ranging from 2.3 to 3.6 times the control while maintaining cell viabilities greater than 90%. An Arrhenius injury model fit to the cell damage data yielded values of and . Knowledge of the injury parameters and HSP70 kinetics will enhance dosimetry guideline development for thermal stimulation of heat shock proteins expression in cardiac tissue.
Issue Section:
Cell
1.
Gowda
, A.
, Yang
, C. J.
, Asimakis
, G. K.
, Ruef
, J.
, Rastegar
, S.
, Runge
, M. S.
, and Motamedi
, M.
, 1998, “Cardioprotection by Local Heating: Improved Myocardial Salvage After Ischemia and Reperfusion
,” Ann. Thorac. Surg.
0003-4975, 65
(5
), pp. 1241
–1247
.2.
Richard
, V.
, Kaeffer
, N.
, and Thuillez
, C.
, 1996, “Delayed Protection of the Ischemic Heart from Pathophysiology to Therapeutic Applications
,” Fundam. Clin. Pharmacol.
0767-3981, 10
(4
), pp. 409
–415
.3.
Patel
, B. A.
, Khaliq
, J.
, and Evans
, J.
, 1995, “Hypoxia Induces HSP70 Gene Expression in Human Hepatoma (HEP G2) Cells
,” Biochem. Mol. Biol. Int.
1039-9712, 36
, pp. 907
–912
.4.
Kabakov
, A. E.
, and Gabai
, V. L.
, 1997, Heat Shock Proteins and Cytoprotection: Atp-Deprived Mammalian Cells
, Springer-Verlag
, Heidelberg, Chap. 1.5.
Kukreja
, R. C.
, et al., 1994, “Oxidant Stress Increases Heat Shock Protein 70 mRNA in Isolated Perfused Rat Heart
,” Am. J. Physiol.
0002-9513, 267
(6
), pp. H2213
–H2219
.6.
Yang
, X. M.
, Baxter
, G. F.
, Heads
, R. J.
, Yellon
, D. M.
, Downey
, J. M.
, and Cohen
, M. V.
, 1996, “Infarct Limitation of the Second Window of Protection in a Conscious Rabbit Model
,” Cardiovasc. Res.
0008-6363, 31
(5
), pp. 777
–783
.7.
Kiang
, J. G.
, and Tsokos
, G. C.
, 1998, “Heat Shock Protein 70kDa: Molecular Biology, Biochemistry, and Physiology
,” Pharmacology
0031-7012, 80
(2
) pp. 183
–201
.8.
Martin
, J.
, Horwich
, A.
, and Hartl
, F. U.
, 1992, “Prevention of Protein Denaturation under Heat Stress by the Chaperonin HSP60
,” Science
0036-8075, 258
, pp. 995
–958
.9.
Weich
, H.
, Buchner
, J.
, Zimmermann
, R.
, and Jakob
, U.
, 1992, “HSP90 Chaperones Protein Folding In Vitro
,” Nature (London)
0028-0836, 358
(6382
), pp. 169
–170
.10.
Currie
, R. W.
, Karmazyn
, M.
, Kloc
, M.
, and Mailer
, K.
, 1988, “Heat Shock Response is Associated With Enhanced Post-Ischemic Ventricular Recovery
,” Circ. Res.
0009-7330, 63
(3
), pp. 543
–549
.11.
Kawana
, K.
, Miyamoto
, Y.
, Tanonaka
, K.
, Han-No
, Y.
, Yoshida
, H.
, Takahashi
, M.
, and Takeo
, S.
, 2000, “Cytoprotective Mechanism of Heat Shock Protein 70 Against Hypoxia/Reoxygenation Injury
,” J. Mol. Cell. Cardiol.
0022-2828, 32
(12
), pp. 2229
–2237
.12.
Yellon
, D. M.
, Pasini
, E.
, Cargnoni
, A.
, Marber
, M. S.
, Latchman
, D. S.
, and Ferrari
, R.
, 1992, “The Protective Role of Heat Stress in the Ischemic and Reperfused Rabbit Myocardium
,” J. Mol. Cell. Cardiol.
0022-2828, 24
, pp. 895
–907
.13.
Currie
, R. W.
, Tanguay
, R. M.
, and Kingma
, J. G.
, 1993, “Heat-Shock Response and Limitation of Tissue Necrosis During Occlusion/Reperfusion in Rabbit Hearts
,” Circulation
0009-7322, 87
(3
), pp. 963
–971
.14.
Marber
, M. S.
, Latchman
, D. S.
, Walker
, J. M.
, and Yellon
, D. M.
, 1993, “Cardiac Stress Protein Elevation 24hrs After Brief Ischemia or Heat Stress is Associated With Resistance to Myocardial Infarction
,” Circulation
0009-7322, 88
(3
), pp. 1264
–1272
.15.
Kaeffer
, N.
, Richard
, V.
, and Thuillez
, C.
, 1994, “Heat Stress Protects Coronary Against Coronary Endothelial Dysfunction After Myocardial Ischemia and Reperfusion in Rats
,” Circulation
0009-7322, 89
(3
), pp. 1254
–1261
.16.
Donnelly
, T. J.
, Sievers
, F. L.
, Vissern
, F. L.
, Welch
, W. J.
, and Wolfe
, C. L.
, 1992, “Heat Shock Protein Induction in Rat Hearts: A Role for Improved Myocardial Salvage After Ischemia and Reperfusion?
” Circulation
0009-7322, 85
(2
), pp. 769
–778
.17.
Morimoto
, R. I.
, and Santoro
, M. G.
, 1998, “Stress-Inducible Responses and Heat Shock Proteins: New Pharmacologic Targets for Cryoprotection
,” Nat. Biotechnol.
1087-0156, 16
(9
), pp. 833
–838
.18.
Wang
, S.
, Diller
, K. R.
, and Aggarwal
, S.
, 2003, “Heat Shock Protein 70 Expression Kinetics
,” ASME J. Biomech. Eng.
0148-0731, 125
(6
), pp. 794
–797
.19.
Ito
, H.
, et al., 1999, “Thermal Preconditioning Protects Rat Cardiac Muscle Cells from Doxorubicin-Induced Apoptosis
,” Life Sci.
0024-3205, 64
(9
), pp. 755
–761
.20.
Tekin
, L.
, Bhargava
, P.
, and Kukreja
, R. C.
, 2001, ”Whole Body Hyperthermia and Preconditioning of the Heart: Basic Concepts, Complexity, and Potential Mechanisms
,” Int. J. Hyperthermia
0265-6736, 17
(5
), pp. 439
–455
.21.
Joyeux
, M.
, Boumendjel
, A.
, Carroll
, R.
, Ribuot
, C.
, Godin
, D.
, and Yellon
, D.
, 2000, “SB203580, A Mitogen-Activated Protein Kinase Inhibitor, Abolishes Resistance to Myocardial Infarction Induced by Heat Stress
,” Cardiovasc. Drugs Ther.
0920-3206, 14
(3
), pp. 337
–343
.22.
Kukreja
, R.
, Qian
, Y.
, Okubo
, S.
, and Flaherty
, E.
, 1999, “Role of Protein Kinase C and 72kDa Heat Shock Protein in Ischemic Tolerance Following Heat Stress in the Rat Heart
,” Mol. Cell. Biochem.
0300-8177, 195
(1–2
), pp. 123
–131
.23.
Clerk
, A.
, Fuller
, S.
, Michael
, A.
, and Sugden
, P.
, 1998, “Stimulation of Stress-Regulated Mitogen-Activated Protein Kinases (Stress-Activated Protein Kinases/c-Jun N-Terminal Kinases and p38-Mitogen-Activated Protein Kinases) in Perfused Rat Hearts by Oxidative and Other Stresses
,” J. Biol. Chem.
0021-9258, 273
(2
), pp. 728
–734
.24.
Hoag
, J. B.
, Qian
, Y. Z.
, Nayeem
, M. A.
, D’Angelo
, M.
, Kukreja
, R. C.
, 1997, “ATP-Sensitive Potassium Channel Mediates Delayed Ischemic Protection by Heat Stress in Rabbit Heart
,” Am. J. Physiol.
0002-9513, 273
(5
), pp. H2458
–H2464
.25.
Joyeux
, M.
, Baxter
, G. F.
, Thomas
, D. L.
, Ribuot
, C.
, and Yellon
, D. M.
, 1997, “Protein Kinase C is Involved in Resistance to Myocardial Infarction Induced by Heat Stress
,” J. Mol. Cell. Cardiol.
0022-2828, 29
(12
), pp. 3311
–3319
.26.
Tekin
, D.
, Xi
, L.
, Zhao
, T.
, Tejero-Taldo
, M. I.
, Atluri
, S.
, and Kukreja
, R. C.
, 2001, “Mitogen-Activated Protein Kinases Mediate Heat Shock-Induced Delayed Protection in Mouse Heart
,” Am. J. Physiol.
0002-9513, 281
(2
), pp. H523
–H532
.27.
Dybdahl
, B.
, Wahba
, A.
, Lien
, E.
, Trude
, H.
, Flo
, W.
, Anders
, Q.
, Nilofer
, S.
, Olav
, F. M.
, Espevik
, T.
, and Sundan
, A.
, 2002, “Inflammatory Response after Open Heart Surgery Release of Heat-Shock Protein 70 and Signaling Through Toll-Like Receptor-4
,” Circulation
0009-7322, 105
(6
), pp. 685
–690
.28.
Lin
, E.
, Calvano
, S. E.
, and Lowry
, S. F.
, 2000, “Inflammatory Cytokines and Cell Response in Surgery
,” Surgery (St. Louis)
0039-6060, 127
(2
), pp. 117
–126
.29.
Sondermann
, H.
, et al., 2000, “Characterization of a Receptor for Heat Shock Protein 70 on Macrophages and Monocytes
,” Biol. Chem.
1431-6730, 381
(12
), pp. 1165
–1174
.30.
Lamb
, D. J.
, El-Sankary
, W. A.
, Ferns
, and Gordon
, A.
, 2002, “Molecular Mimicry in Atherosclerosis: A Role for Heat Shock Proteins Inimmunisation
,” Arteriosclerosis (Dallas)
0276-5047, 167
(2
), pp. 177
–185
.31.
Madamanchi
, N. R.
, Li
, S.
, Patterson
, C.
, and Rouge
, M. S.
, 2001, “Reactive Oxygen Species Regulate Heat Shock Protein 70 via the JAK/STAT Pathway
,” Arterioscler., Thromb., Vasc. Biol.
1079-5642, 21
(3
), pp. 321
–330
.32.
Xu
, Q.
, Schett
, G.
, Li
, C.
, Hu
, Y.
, and Wick
, G.
, 2000, “Mechanical Stress-Induced Heat Shock Protein 70 Expression in Vascular Smooth Muscle Cells is Regulated by Rac and Ras Small G Proteins but not Mitogen-Activated Protein Kinases
,” Circ. Res.
0009-7330, 86
(11
), pp. 1122
–1128
.33.
Currie
, R. W.
, Tanguay
, R. M.
, and Kingma
, J. G.
, 1993, “Heat Shock Response and Limitation of Tissue Necrosis During Occlusion/Reperfusion in Rabbit Hearts
,” Circulation
0009-7322, 87
(3
), 1048
–1051
.34.
Yan
, L.
, Christians
, E. S.
, Liu
, L.
, Xiao
, X.
, Sohal
, R. S.
, and Benjamin
, I. J.
, 2002, “Mouse Heat Shock Transcription Factor 1 Deficiency Alters Cardiac Redox Homeostasis and Increases Mitochondrial Oxidative Damage
,” EMBO J.
0261-4189, 21
(19
), pp. 5164
–5172
.35.
Pirkkala
, L.
, Alastalo
, T. P.
, Zuo
, X.
, Benjamin
, I. J.
, and Sistonen
, L.
, 2000, “Disruption of Heat Shock Factor 1 Reveals an Essential Role in the Ubiquitin Proteolytic Pathway
,” Mol. Cell. Biol.
0270-7306, 20
(8
), pp. 2670
–2675
.36.
Manalo
, D. J.
, Lin
, Z.
, and Liu
, A. Y.
, 2002, “Redox-Dependent Regulation of the Conformation and Function of Human Heat Shock Factor 1
,” Biochemistry
0006-2960, 41
(8
), pp. 2580
–2588
.37.
Marchler
, G.
, and Wu
, C.
, 2001, “Modulation of Drosophila Heat Shock Transcription Factor Activity by the Molecular Chaperone DROJ1
,” EMBO J.
0261-4189, 20
(3
), pp. 499
–509
.38.
Knowlton
, A. A.
, Grenier
, M.
, and Kirchhoff
, S. R.
, 2000, “Phosphorylation at Tyrosine–524 Influences Nuclear Accumulation of HSP72 with Heat Stress
,” Am. J. Physiol.
0002-9513, 278
(6
), pp. H2143
–21499
.39.
Diller
, K. R.
, Valvano
, J. W.
, and Pearce
, J. A.
, 2000, “Bioheat Transfer
.” in: CRC Handbook of Thermal Engineering
, F.
Kreith
, ed., CRC Press
, Boca Raton, pp. 4114
–4187
.40.
Fenn
, A. J.
, Wolf
, G. L.
, and Fogle
, R. M.
, 1999, “An Adaptive Microwave Phased Array for Targeted Heating of Deep Tumors in Intact Breast: Animal Study Results
,” Int. J. Hyperthermia
0265-6736, 15
(1
), pp. 45
–61
.41.
Amrani
, M.
, et al., 1997, “Relative Induction of Heat Shock Protein in Coronary Endothelial Cells and Cardiomyocytes: Implications for Myocardial Protection
,” J. Thorac. Cardiovasc. Surg.
0022-5223, 115
, pp. 200
–209
.42.
Leger
, J.
, Smith
, F. M.
, and Currie
, R. W.
, 2000, “Confocal Microscopic Localization of Constituitive and Heat Shock-Induced Proteins HSP70 and HSP27 in the Rat Heart
,” Circulation
0009-7322, 102
, pp. 1703
–1709
.43.
Diaz
, S. H.
, Nelson
, J. S.
, and Wong
, B. J. F.
, 2003, “Rate Process Analysis of Thermal Damage in Cartilage
,” Phys. Med. Biol.
0031-9155, 48
(1
), pp. 19
–29
.44.
Takata
, A. N.
et al., 1974, “Thermal Model of Laser Induced Eye Damage, Final Rept. USAF School of Aerospace Medicine, Brooks AFB TX
,” Contract No. F41609–74-C–0005, IIT Research Institute
, Chicago, IL.45.
Agah
, R.
, 1988, “Quantitative Characterization of Arterial Tissue Thermal Damage
,” MSE thesis, The University of Texas at Austin.46.
Sanghvi
, N. T.
, Foster
, R. S.
, Bihrle
, R.
, Casey
, R.
, Uchida
, T.
, Phillips
, M. H.
, Syrus
, J.
, Zaitsev
, A. V.
, Marich
, K. W.
, and Fry
, F. J.
, 1999, “Noninvasive Surgery of Prostate Tissue by High Intensity Focused Ultrasound: An Updated Report
,” Eur. J. Ultrasound
0929-8266, 9
(1
), pp. 19
–29
.47.
Uchida
, T.
, Muramoto
, M.
, Kyunou
, H.
, Iwamura
, M.
, Egawa
, S.
, and Koshiba
, K.
, 1998, “Clinical Outcome of High-Intensity Focused Ultrasound for Treating Benign Prostatic Hyperplasia: Preliminary Report
,” Urology
0090-4295, 52
(1
), pp. 66
–71
.48.
Sanghvi
, N. T.
, Fry
, F. J.
, Bihrle
, R.
, Foster
, R. S.
, Phillips
, M. H.
, Syrus
, J. S.
, Zaitsev
, A. V.
, and Hennige
, C. W.
, 1996, “Noninvasive Surgery of Prostate Tissue by High-Intensity Focused Ultrasound
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010, 43
(6
), pp. 243
–247
.49.
Paiva
, M.
, Blackwell
, K.
, and Saxton
, R.
, 2002, “Nd–YAG Laser Therapy for Palliation of Recurrent Squamous Cell Carcinomas in the Oral Cavity
,” Lasers Surg. Med.
0196-8092, 31
(1
), pp. 64
–69
.50.
Dorr
, L. N.
, and Hynymen
, K.
1993, “The Effects of Tissue Heterogeneities and Large Blood Vessels on Thermal Exposure Induced by Short High-Power Ultrasound Pulses
,” Int. J. Hyperthermia
0265-6736, 8
(1
), pp. 45
–59
.51.
LaFon
, C.
, Prat
, F.
, Chapelon
, J. Y.
, Gorry
, F.
, Margomari
, J.
, Theillere
, Y.
, and Cathigno
, I. D.
, 2000, “Cylindrical Thermal Coagulation Necrosis using an Interstitial Applicator with a Plane Ultrasonic Transducer: In Vitro and In Vivo Experiments Versus Computer Simulations
,” Int. J. Hyperthermia
0265-6736, 16
(6
), pp. 508
–522
.52.
Goldberg
, S. N.
, Gazelle
, G. S.
, and Mueller
, P. R.
, 2000, “The Thermal Ablation Therapy for Focal Malignancy: A Unified Approach to Underlying Principles, Techniques, and Diagnostic Imaging Guidance
,” AJR, Am. J. Roentgenol.
0361-803X, 174
(3
), pp. 323
–331
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.