Background: Whole bone in vitro biomechanical compressive testing can be complicated by three factors: sample asymmetry, heterogeneous material properties, and unknown effective centroid location. Method of approach: The technique presented here facilitates the calculation of effective centroid position, modulus of elasticity and equivalent uniform strain magnitude for a cross section of bone from a simple whole bone compressive test. Simplification of section response to load is achieved through a combination of linear beam and simple planer geometry theory. The technique requires three longitudinal strain gauges be affixed around the test specimen cross section of interest, gauge position need not be determined. Sample loading is then accomplished using a simple four point loading jig. Results: Results of the technique are presented on an object with known elasticity and geometry, an aluminium tube, and seven pairs of equine third metacarpal whole bones. Conclusions: Average cross section modulus of elasticity, equivalent uniform cross section strain, and effective centroid locations were all predicted to within the range of published values. Employing the testing setup and analysis technique presented in this paper resulted in a significant savings in both implementation complexity and cost over previously available techniques.

1.
Beer
,
F. P.
, and
Johnston
,
E. R.
, 1981,
Mechanics of Materials
,
McGraw-Hill Ryerson
, New York, pp.
156
,
168
169
.
2.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
, 1974, “
The Elastic Modulus For Bone
,”
J. Biomech.
0021-9290,
7
, pp.
271
275
.
3.
Boyce
,
T. M.
,
Fyhrie
,
D. P.
,
Glotkowski
,
M. C.
,
Radin
,
E. L.
, and
Shaffler
,
M. B.
, 1998, “
Damage Type and Strain Mode Associations in Human Compact Bone Bending Fatigue
,”
J. Orthop. Res.
0736-0266,
16
, pp.
322
329
.
4.
Cordey
,
J.
, and
Gautier
,
E.
, 1999, “
Strain Gauges Used in Mechanical Testing of Bones Part III: Strain Analysis, Graphic Determination of the Neutral Axis
,”
Injury
0020-1383,
30
, pp.
S
-A21–S-
A25
.
5.
Salathe
, Jr.,
E. P.
,
Arangio
,
G. A.
, and
Salathe
,
E. P.
, 1989, “
An Application of Beam Theory to Determine the Stress and Deformation of Long Bones
,”
J. Biomech.
0021-9290,
22
(
3
), pp.
189
199
.
6.
Turner
,
C. H.
, and
Burr
,
D. B.
, 1993, “
Basic Biomechanical Measurements of Bone: A Tutorial
,”
Bone (N.Y.)
8756-3282,
14
, pp.
6593
6608
.
7.
Gross
,
T. S.
,
McLeod
,
K. J.
, and
Rubin
,
C. T.
, 1992, “
Characterizing Bone Strain Distributions In Vivo Using Three Triple Rosette Strain Gauges
,”
J. Biomech.
0021-9290,
25
(
9
), pp.
1081
1087
.
8.
Les
,
C. M.
,
Keyak
,
J. H.
,
Stover
,
S. M.
, and
Taylor
,
K. T.
, 1997, “
Development and Validation of a Series of Three-Dimensional Finite Element Models of the Equine Metacarpus
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
737
742
.
9.
Coleman
,
J. C.
,
Hart
,
R. T.
,
Owan
,
I.
,
Tankano
,
Y.
, and
Burr
,
D. B.
, 2002, “
Characterization of Dynamic Three-Dimensional Strain Fields in the Canine Radius
,”
J. Biomech.
0021-9290,
35
, pp.
1677
1683
.
10.
Gies
,
A. A.
, and
Carter
,
D. R.
, 1982, “
Experimental Determination of Whole Long Bone Sectional Properties
,”
J. Biomech.
0021-9290,
15
(
4
), pp.
297
303
.
11.
Carter
,
D. R.
,
Caler
,
W. E.
, and
Harris
,
W. H.
, 1981, “
Resultant Loads and Elastic Modulus Calibration of Long Bone Cross Sections
,”
J. Biomech.
0021-9290,
14
(
11
), pp.
739
745
.
12.
Cordey
,
J.
, and
Gautier
,
E.
, 1999, “
Strain Gauges Used in Mechanical Testing of Bones Part I: Theoretical and Technical Aspects
,”
Injury
0020-1383,
30
, pp.
S
-A7–S-
A13
.
13.
Cordey
,
J.
, and
Gautier
,
E.
, 1999, “
Strain Gauges Used in Mechanical Testing of Bones Part II: In Vitro and In Vivo Technique
,”
Injury
0020-1383,
30
, pp.
S
-A14–S-
A20
.
14.
Les
,
C.
,
Stover
,
S.
,
Taylor
,
K.
,
Keyak
,
J.
, and
Willits
,
N.
, 1998, “
Ex Vivo Simulation of In Vivo Strain Distribution in the Equine Metacarpus
,”
Equine Vet. J.
0425-1644,
30
, pp.
260
266
.
15.
Whan
,
G.
,
Bullock
,
S. J.
,
Phillips
,
J.
,
Runciman
,
R. J.
,
Pearce
,
S.
, and
Hurtig
,
M.
, 2003, “
Development and Testing of a Modular Strain Measurement Clip
,”
J. Biomech.
0021-9290,
36
, pp.
1669
1674
.
16.
Anton
,
H.
, and
Rorres
,
C.
, 1994,
Elementary Linear Algebra
,
7th ed.
,
Wiley
, New York, Sec. 3.5, p.
154
.
17.
Baumeister
,
T.
, 1978,
Marks’ Standard Handbook for Mechanical Engineers
,
8th ed.
,
McGraw-Hill
, New York, pp.
1
38
,
5
5
.
18.
Turner
,
A. S.
,
Mills
,
E. J.
, and
Gabel
,
A. A.
, 1975, “
In Vivo Measurement of Bone Strain in the Horse
,”
Am. J. Vet. Res.
0002-9645,
36
, pp.
1573
1579
.
19.
Dally
,
J.
, and
Riley
,
W.
, 1978,
Experimental Stress Analysis
,
McGraw-Hill
, New York, pp.
251
253
.
20.
Dilke
,
O. A. W.
, 1971,
The Roman Land Surveyors
,
David & Charles
, South Devon House.
21.
An
,
Y. H.
, and
Draughn
,
R. A.
, 2000,
Mechanical Testing of Bone and the Bone-Implant Interface
,
CRC Press
, Boca Raton, p.
69
.
You do not currently have access to this content.