Background. As opposed to thoracoplasty (a cosmetic surgical intervention used to reduce the rib hump associated with scoliosis), experimental scoliosis has been produced or reversed on animals by rib shortening or lengthening. In a prior work (J. Orthop. Res., 20, pp. 1121–1128), a finite element modeling (FEM) of rib surgeries was developed to study the biomechanics of their correction mechanisms. Our aims in the present study were to investigate the influence of the rib surgery parameters and to identify optimal configurations. Hence, a specific objective of this study was to develop a method to find surgical parameters maximizing the correction by addressing the issue of high computational cost associated with FEM. Method of Approach. Different configurations of rib shortening or lengthening were simulated using a FEM of the complete torso adapted to the geometry of six patients. Each configuration was assessed using objective functions that represent different correction objectives. Their value was evaluated using the rib surgery simulation for sample locations in the design space specified by an experimental design. Dual kriging (interpolation technique) was used to fit the data from the computer experiment. The resulting approximation model was used to locate parameters minimizing the objective function. Results. The overall coverage of the design space and the use of an approximation model ensured that the optimization algorithm had not found a local minimum but a global optimal correction. The interventions generally produced slight immediate modifications with final geometry presenting between 95–120% of the initial deformation in about 50% of the tested cases. But in optimal cases, important loads (500-2000Nmm) were generated on vertebral endplates in the apical region, which could potentially produce the long-term correction of vertebral wedging by modulating growth. Optimal parameters varied among patients and for different correction objectives. Conclusions. Approximation models make it possible to study and find optimal rib surgery parameters while reducing computational cost.

1.
Sevastik
,
J.
,
Agadir
,
M.
, and
Sevastik
,
B.
, 1990, “
Effects of Rib Elongation on the Spine. II. Correction of Scoliosis in the Rabbit
,”
Spine
0362-2436,
15
, pp.
826
829
.
2.
Xiong
,
B.
, and
Sevastik
,
J. A.
, 1998, “
A Physiological Approach to Surgical Treatment of Progressive Early Idiopathic Scoliosis
,”
Eur. Spine J.
0940-6719,
7
, pp.
505
508
.
3.
Deguchi
,
M.
,
Kawakami
,
N.
, and
Kanemura
,
T.
, 1997, “
Correction of Experimental Scoliosis by Rib Resection in the Transverse Plane
,”
J. Spinal Disord.
0895-0385,
10
, pp.
197
203
.
4.
Deguchi
,
M.
,
Kawakami
,
N.
, and
Kanemura
,
T.
, 1996, “
Correction of Scoliosis by Rib Resection in Pinealectomized Chickens
,”
J. Spinal Disord.
0895-0385,
9
, pp.
207
213
.
5.
Grealou
,
L.
,
Aubin
,
C. E.
, and
Labelle
,
H.
, 2002, “
Rib Cage Surgery for the Treatment of Scoliosis: A Biomechanical Study of Correction Mechanisms
,”
J. Orthop. Res.
0736-0266,
20
, pp.
1121
1128
.
6.
Simpson
,
T. W.
,
Peplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
, pp.
129
150
.
7.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Henry
,
P. W.
, 1989, “
Design and Analysis of Computer Experiments
,”
Struct. Multidiscip. Optim.
1615-147X,
4
, pp.
409
435
.
8.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
1
13
.
9.
Aubin
,
C. E.
,
Descrimes
,
J. L.
,
Dansereau
,
J.
,
Skalli
,
W.
,
Lavaste
,
F.
, and
Labelle
,
H.
, 1995, “
Geometrical Modeling of the Spine and the Thorax for the Biomechanical Analysis of Scoliotic Deformities Using the Finite Element Method
,”
Ann. Chir.
0003-3944,
49
, pp.
749
761
.
10.
Descrimes
,
J. L.
,
Aubin
,
C. E.
,
Skalli
,
W.
,
Zeller
,
R.
,
Dansereau
,
J.
, and
Lavaste
,
F.
, 1995, “
Modelling of Facet Joints in a Finite Element Model of the Scoliotic Spine and Thorax: Mechanical Aspects
,”
Rachis
7
, pp.
301
314
.
11.
Gignac
,
D.
,
Aubin
,
C. E.
,
Dansereau
,
J.
, and
Labelle
,
H.
, 2000, “
Optimization Method for 3D Bracing Correction of Scoliosis Using a Finite Element Model
,”
Eur. Spine J.
0940-6719,
9
(
3
), pp.
185
-
190
.
12.
Dansereau
,
J.
,
Beauchamp
,
A.
,
de Guise
,
J.
, and
Labelle
,
H.
, 1990, “
Three-Dimensional Reconstruction of the Spine and the Rib Cage From Stereoradiographic and Imaging Techniques
,”
Proceedings of the 16th Conference of the Canadian Society of Mechanical Engineering
, Vol.
2
, pp.
61
64
.
13.
Delorme
,
S.
,
Petit
,
Y.
,
de Guise
,
J. A.
,
Labelle
,
H.
,
Aubin
,
C. E.
, and
Dansereau
,
J.
, 2003, “
Assessment of the 3-D Reconstruction and High-Resolution Geometrical Modeling of the Human Skeletal Trunk From 2-D Radiographic Images
,”
IEEE Trans. Biomed. Eng.
0018-9294,
50
(
8
), pp.
989
-
198
.
14.
Aubin
,
C. E.
,
Dansereau
,
J.
,
Petit
,
Y.
,
Parent
,
F.
,
de Guise
,
J. A.
, and
Labelle
,
H.
, 1998, “
Three-Dimensional Measurement of Wedged Scoliotic Vertebrae and Intervertebral Disks
,”
Eur. Spine J.
0940-6719,
7
, pp.
59
65
.
15.
Stokes
,
I. A.
, 1994, “
Three-Dimensional Terminology of Spinal Deformity. A Report Presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D Terminology of Spinal Deformity
,”
Spine
0362-2436,
19
, pp.
236
248
.
16.
Wynarsky
,
G. T.
, and
Schultz
,
A. B.
, 1991, “
Optimization of Skeletal Configuration: Studies of Scoliosis Correction Biomechanics
,”
J. Biomech.
0021-9290,
24
, pp.
721
-
732
.
17.
Stokes
,
I. A.
,
Bigalow
,
L. C.
, and
Moreland
,
M. S.
, 1986, “
Measurement of Axial Rotation of Vertebrae in Scoliosis
,”
Spine
0362-2436,
11
(
3
), pp.
213
218
.
18.
Villemure
,
I.
,
Aubin
,
C. E.
,
Grimard
,
G.
,
Dansereau
,
J.
, and
Labelle
,
H.
, 2001, “
Progression of Vertebral and Spinal Three-Dimensional Deformities in Adolescent Idiopathic Scoliosis: A Longitudinal Study
,”
Spine
0362-2436,
26
, pp.
2244
2250
.
19.
Delorme
,
S.
,
Violas
,
P.
,
Dansereau
,
J.
,
de Guise
,
J.
,
Aubin
,
C. E.
, and
Labelle
,
H.
, 2001, “
Preoperative and Early Postoperative Three-Dimensional Changes of the Rib Cage After Posterior Instrumentation in Adolescent Idiopathic Scoliosis
,”
Eur. Spine J.
0940-6719,
10
(
2
), pp.
101
106
.
20.
Stokes
,
I. A.
,
Dansereau
,
J.
, and
Moreland
,
M. S.
, 1989, “
Rib Cage Asymmetry in Idiopathic Scoliosis
,”
J. Orthop. Res.
0736-0266,
7
(
4
), pp.
599
606
.
21.
Lenke
,
L. G.
,
Bridwell
,
K. H.
,
Blanke
,
K.
, and
Baldus
,
C.
, 1995, “
Analysis of Pulmonary Function and Chest Cage Dimension Changes After Thoracoplasty in Idiopathic Scoliosis
,”
Spine
0362-2436,
20
, pp.
1343
1350
.
22.
Stagnara
,
P.
,
De Mauroy
,
J. C.
,
Dran
,
G.
,
Gonon
,
G. P.
,
Costanzo
,
G.
,
Dimnet
,
J.
, and
Pasquet
,
A.
, 1982, “
Reciprocal Angulation of Vertebral Bodies in a Sagittal Plane: Approach to References for the Evaluation of Kyphosis and Lordosis
,”
Spine
0362-2436,
7
, pp.
335
342
.
23.
Propst-Proctor
,
S. L.
, and
Bleck
,
E. E.
, 1983, “
Radiographic Determination of Lordosis and Kyphosis in Normal and Scoliotic Children
,”
J. Pediatr. Orthop.
0271-6798,
3
, pp.
344
346
.
24.
Arkin
,
A. M.
, and
Katz
,
J. F.
, 1956, “
The Effects of Pressure on Epiphyseal Growth. The Mechanism of Plasticity of Growing Bone
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
38-A
, pp.
1056
1076
.
25.
Gooding
,
C. A.
, and
Neuhauser
,
E. B.
, 1965, “
Growth and Development of the Vertebral Body in the Presence and Absence of Normal Stress
,”
Am. J. Roentgenol., Radium Ther. Nucl. Med.
0002-9580,
93
, pp.
388
394
.
26.
Stokes
,
I. A. F.
, 2000, “
Hueter–Volkmann Effect
,” Spine: State of the Art Reviews,
Etiology of Adolescent Idiopathic Scoliosis: Current Trends and Relevance to New Treatment Approaches
, edited by
R. G.
Burwell
et al.
, (
Hanley & Belfus
, Philadelphia, PA), pp.
349
357
.
27.
Steel
,
H. H.
, 1983, “
Rib Resection and Spine Fusion in Correction of Convex Deformity in Scoliosis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
65
, pp.
920
925
.
28.
Owen
,
R.
,
Turner
,
A.
,
Bamforth
,
J. S.
,
Taylor
,
J. F.
, and
Jones
,
R. S.
, 1986, “
Costectomy As the First Stage of Surgery for Scoliosis
,”
J. Bone Joint Surg. Br.
0301-620X,
68
, pp.
91
95
.
29.
Geissele
,
A. E.
,
Ogilvie
,
J. W.
,
Cohen
,
M.
, and
Bradford
,
D. S.
, 1994, “
Thoracoplasty for the Treatment of Rib Prominence in Thoracic Scoliosis
,”
Spine
0362-2436,
19
(
14
), pp.
1636
-
1642
.
30.
Shufflebarger
,
H. L.
,
Smiley
,
K.
, and
Roth
,
H. J.
, 1994, “
Internal Thoracoplasty. A New Procedure
,”
Spine
0362-2436,
19
, pp.
840
842
.
31.
Barrett
,
D. S.
,
MacLean
,
J. G.
,
Bettany
,
J.
,
Ransford
,
A. O.
, and
Edgar
,
M. A.
, 1993, “
Costoplasty in Adolescent Idiopathic Scoliosis. Objective Results in 55 Patients
,”
J. Bone Joint Surg. Br.
0301-620X,
75
, pp.
881
885
.
32.
Fang
,
K. T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
, 2000, “
Uniform Design: Theory and Application
,”
Technometrics
0040-1706,
42
, pp.
237
248
.
33.
Fang
,
K. T.
,
Ma
,
C. X.
, and
Winker
,
P.
, 2002, “
Centered L-2-Discrepancy of Random Sampling and Latin Hypercube Design, and Construction of Uniform Designs
,”
Math. Comput.
0025-5718,
71
, pp.
275
296
.
34.
Fang
,
K. T.
,
Ma
,
C. X.
, and
Winker
,
P.
, The Uniform Design Association of China, 1999, “
Uniform Design Based on Centered L2 Discrepancy—Un(Ns)
,” http://www.math.hkbu.edu.hk/UniformDesign/http://www.math.hkbu.edu.hk/UniformDesign/.
35.
Krige
,
D. G.
, 1951, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
Journal of the Chemical, Metallurgical and Mining Society of South Africa
,
52
, pp.
119
139
.
36.
Matheron
,
G.
, 1973, “
The Intrinsic Random Functions and Their Applications
,
Adv. Appl. Probab.
0001-8678,
5
, pp.
439
468
.
37.
Trochu
,
F.
, 1993, “
Contouring Program Based on Dual Kriging Interpolation
,”
Eng. Comput.
0177-0667,
9
, pp.
160
177
.
38.
Phan
,
A. V.
, and
Trochu
,
F.
, 1998, “
Application of Dual Kriging to Structural Shape Optimization Based on the Boundary Contour Method
,”
Arch. Appl. Mech.
0939-1533,
68
(
7/8
), pp.
539
551
.
39.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
21
(
2
), pp.
239
245
.
40.
Optimization Toolbox User’s Guide
,” 2001, Version 2, The MathWorks, Inc., Natick, MA, http://www.mathworks.comhttp://www.mathworks.com.
41.
Labelle
,
H.
,
Dansereau
,
J.
,
Bellefleur
,
C.
, and
Jequier
,
J. C.
, 1995, “
Variability of Geometric Measurements From Three-Dimensional Reconstructions of Scoliotic Spines and Rib Cages
,”
Eur. Spine J.
0940-6719,
4
(
2
), pp.
88
94
.
42.
Simpson
,
T. W.
, 1998, “
A Concept Exploration Method for Product Family Design
,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA.
43.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
, 2001, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
1598-0073,
2
, pp.
209
240
.
44.
Sasena
,
M. J.
,
Papalambros
,
P.
, and
Goovaerts
,
P.
, 2002, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optimiz.
0305-215X,
34
, pp.
263
278
.
45.
Wilson
,
B.
,
Cappelleri
,
D.
,
Simpson
,
T. W.
, and
Frecker
,
M.
, 2001, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
J. Soc. Photo-Opt. Instrum. Eng.
,
2
, pp.
31
50
.
46.
Miller
,
J. A. A.
, and
Skogland
,
L. B.
, 1980, “
Musculo-Skeletal Interactions in the Adolescent Spine: A Study of the Effect of Some Geometric and Material Property Changes in a Three-Dimensional Mathematical Model
,” Paper VI in
On the Importance of Growth in Idiopathic Scoliosis: A Biochemical, Radiological and Biomechanical Study
, Biomechanics Laboratory, University of Oslo, Oslo, Norway.
You do not currently have access to this content.