Background: Restenosis after stent implantation varies with stent design. Alterations in secondary flow patterns and wall shear stress (WSS) can modulate intimal hyperplasia via their effects on platelet and inflammatory cell transport toward the wall, as well as direct effects on the endothelium. Method of Approach: Detailed flow characteristics were compared by estimating the WSS in the near-strut region of realistic stent designs using three-dimensional computational fluid dynamics (CFD), under pulsatile high and low flow conditions. The stent geometry employed was characterized by three geometric parameters (axial strut pitch, strut amplitude, and radius of curvature), and by the presence or lack of the longitudinal connector. Results: Stagnation regions were localized around stent struts. The regions of low WSS are larger distal to the strut. Under low flow conditions, the percentage restoration of mean axial WSS between struts was lower than that for the high flow by 10–12%. The largest mean transverse shear stresses were 30–50% of the largest mean axial shear stresses. The percentage restoration in WSS in the models without the longitudinal connector was as much as 11% larger than with the connector. The mean axial WSS restoration between the struts was larger for the stent model with larger interstrut spacing. Conclusion: The results indicate that stent design is crucial in determining the fluid mechanical environment in an artery. The sensitivity of flow characteristics to strut configuration could be partially responsible for the dependence of restenosis on stent design. From a fluid dynamics point of view, interstrut spacing should be larger in order to restore the disturbed flow; struts should be oriented to the flow direction in order to reduce the area of flow recirculation. Longitudinal connectors should be used only as necessary, and should be parallel to the axis. These results could guide future stent designs toward reducing restenosis.

1.
Kastrati
,
A. J.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schuhlen
,
H.
,
et al.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
0002-9149,
87
, pp.
34
39
.
2.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
(
Springer-Verlag
, Berlin).
3.
Pache
,
A.
,
Kastrati
,
J.
,
Mehilli
,
H.
,
Schuhlen
,
H.
, and
Dotzer
,
F.
,
Hausleiter
,
J.
,
et al.
, 2003, “
Intracoronary Stenting and Angiographic Results: Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO-2) Trial
,”
J. Am. Coll. Cardiol.
0735-1097,
41
, pp.
1283
1288
.
4.
Tominaga
,
R.
,
Kambic
,
H. E.
,
Emoto
,
H.
,
Harasaki
,
H.
,
Sutton
,
C.
, and
Hollman
,
J.
, 1992, “
Effects of Design Geometry of Intravascular Endoprostheses on Stenosis Rate in Normal Rabbits
.”
Am. Heart J.
0002-8703,
123
,
21
28
.
5.
Rogers
,
C.
, and
Edelman
,
E. R.
, 1995, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
0009-7322,
91
, pp.
2995
3001
.
6.
Lau
,
K. W.
,
Mak
,
K. H.
,
Hung
,
J. S.
, and
Sigwart
,
U.
, 2004, “
Clinial Impact of Stent Construction and Design in Percutaneous Coronary Intervention
,”
Am. Heart J.
0002-8703,
147
, pp.
764
73
.
7.
Lau
,
K. W.
,
Johan
,
A.
,
Sigwart
,
U.
, and
Hung
,
J. S.
, 2004, “
A Stent is Not Just a Stent: Stent Construction and Design Do Matter in its Clinical Performance
,”
Singapore Med. J.
0037-5675,
45
, pp.
305
312
.
8.
Morton
,
A. C.
,
Arnold
,
N. D.
,
Crossman
,
D. C.
, and
Gunn
,
J.
, 2004, “
Response of Very Small (2mm) Porcine Coronary Arteries to Balloon Angioplasty and Stent Implantation
,”
Heart
1355-6037,
90
, pp.
324
327
.
9.
Morice
,
M. C.
,
Serruys
,
P. W.
,
Sousa
,
J. E.
,
Fajadet
,
J.
,
Ban Hayashi
,
E.
,
Perin
,
M.
,
et al.
, 2002, “
A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent For Coronary Revascularization
,”
N. Engl. J. Med.
0028-4793,
349
, pp.
1315
1323
.
10.
Morton
,
A. C.
,
Crossman
,
D.
, and
Gunn
,
J.
, 2004, “
The Influence of Physical Stent Parameters on Restenosis
,”
Pathol. Biol.
0369-8114,
52
(
4
), pp.
196
205
.
11.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
293
302
.
12.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and the Relationship to Atherosclerosis
.”
Atherosclerosis (Berlin)
0170-0626,
110
, pp.
225
240
.
13.
Berry
,
J. L.
,
Santamarina
,
A.
,
Moore
,
J. E.
,
Roychowdhury
,
S.
, and
Routh
,
W. D.
, 2000, “
Experimental and Computational Flow Evaluation of Coronary Stents
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
386
398
.
14.
Robaina
,
S.
,
Jayachandran
,
B.
,
He
,
Y.
,
Frank
,
A.
,
Moreno
,
M.
,
Moore
,
J.
,
et al.
, 2003, “
Platelet Adhesion to Stimulated Stented Surfaces
,”
J. Endovasc. Ther.
1526-6028,
10
, pp.
978
986
.
15.
LaDisa
,
J. F.
Jr.
,
Guler
,
I.
,
Olson
,
L. E.
,
Hettrick
,
D. A.
,
Kersten
,
J. R.
,
Warltier
,
D. C.
et al.
, 2003, “
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
972
980
.
16.
Hoffman
,
R.
,
Mintz
,
G. S.
,
Mehran
,
R.
,
Satler
,
L. F.
,
Pichard
,
A. D.
,
Popma
,
J. J.
et al.
, 1997, “
Serial Intravascular Ultrasound Predictors of Restenosis at the Margins of Palmaz–Schatz Stents
,”
Am. J. Cardiol.
0002-9149,
79
, pp.
951
953
.
17.
Hoffman
,
R.
,
Mintz
,
G. S.
,
Mehran
,
R.
,
Pichard
,
A. D.
,
Kent
,
K. M.
,
Satler
,
L. F.
et al.
, 1998, “
Intravascular Ultrasound Predictors of Angiographic Restenosis in Lesions Treated with Palmaz–Schatz Stents
,”
J. Am. Coll. Cardiol.
0735-1097,
31
, pp.
43
49
.
18.
Carlier
,
S. G.
,
van Damme
,
L. C.
,
Blommerde
,
C. P.
,
Wentzel
,
J. J.
,
van Langehove
,
G.
,
Verheye
,
S.
et al.
, 2003, “
Augmentation of Wall Shear Stress Inhibits Neointimal Hyperplasia After Stent Implantation: Inhibition Through Reduction of Inflammation?
,”
Circulation
0009-7322,
107
, pp.
2741
2746
.
19.
Wootton
,
D. M.
, and
Ku
,
D. N.
, 1999, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
299
329
.
20.
Karino
,
T.
, and
Goldsmith
,
H. L.
, 1979, “
Adhesion of Human Platelets to Collagen on the Walls Distal to a Tubular Expansion
,”
Microvasc. Res.
0026-2862,
17
, pp.
238
262
.
21.
Brooks
,
A. R.
,
Lelkes
,
P. I.
, and
Rubanyi
,
G. M.
, 2002, “
Gene Expression Profiling of Human Aortic Endothelial Cells Exposed to Disturbed Flow and Steady Laminar Flow
,”
Physiol. Genomics
1094-8341,
9
, pp.
27
41
.
22.
Sampath
,
R.
,
Kukielka
,
G. L.
,
Smith
,
C. W.
,
Eskin
,
S. G.
, and
McIntire
,
L. V.
, 1995, “
Shear Stress Mediated Changes in the Expression of Leukocyte Adhesion Receptors on Human Umbilical Vein Endothelial Cells
,”
Ann. Biomed. Eng.
0090-6964,
23
, pp.
247
256
.
23.
Rogers
,
C.
,
Tseng
,
D. Y.
,
Squire
,
J. C.
, and
Edelman
,
E. R.
, 1999, “
Balloon–Artery Interactions During Stent Placement: A Finite Element Analysis Approach to Pressure, Compliance, and Stent Design as Contributors to Vascular Injury
,”
Circ. Res.
0009-7330,
84
, pp.
378
383
.
24.
Benard
,
N.
,
Coisne
,
D.
,
Donal
,
E.
, and
Perrault
,
R.
, 2003, “
Experimental Study of Laminar Blood Flow Through an Artery Treated By a Stent Implantation: Characterisation of Intra-Stent Wall Shear Stress
,”
J. Biomech.
0021-9290,
36
, pp.
991
998
.
25.
Garasic
,
J. M.
,
Edelman
,
E. R.
,
Squire
,
J. C.
,
Seifert
,
P.
,
Williams
,
M. S.
, and
Rogers
,
C.
, 2000, “
Stent and Artery Geometry Determine Intimal Thickening Independent of Arterial Injury
,”
Circulation
0009-7322,
101
, pp.
812
818
.
26.
Prendergast
,
P. J.
,
Lally
,
C.
,
Daly
,
S.
,
Reid
,
A. J.
,
Lee
,
T. C.
,
Quinn
,
D.
et al.
, 2003, “
Analysis of Prolapse in Cardiovascular Stents: A Constitutive Equation For Vascular Tissue and Finite-Element modelling
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
692
699
.
27.
Henry
,
F. S.
, 2003, “
Flow in Stented Arteries
,” in
Intra- and Extracorporeal Cardiovascular Fluid Dynamics
, edited by
P.
Verdonck
, and
K.
Perktold
(
WIT
, Boston), pp.
333
364
.
28.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
109
120
.
29.
Back
,
M.
,
Kopchok
,
G.
,
Mueller
,
M.
,
Cavaye
,
D.
,
Donayre
,
C.
, and
White
,
R. A.
, 1994, “
Changes in Arterial Wall Compliance After Endovascular Stenting
,”
J. Vasc. Surg.
0741-5214,
19
, pp.
905
911
.
30.
LaDisa
,
J. F.
,
Olson
,
L. E.
,
Guler
,
I.
,
Hettrick
,
D. A.
,
Audi
,
S. H.
,
Kersten
,
J. R.
et al.
, 2004, “
Stent Design Properties and Deployment Ratio Influence Indexes of Wall Shear Stress: A Three-Dimensional Computational Fluid Dynamics Investigation Within a Normal Artery
J. Appl. Physiol.
8750-7587,
97
, pp.
424
430
.
You do not currently have access to this content.