The fluid flow through a stenosed artery and its bypass graft in an anastomosis can substantially influence the outcome of bypass surgery. To help improve our understanding of this and related issues, the steady Navier-Stokes flows are computed in an idealized arterial bypass system with partially occluded host artery. Both the residual flow issued from the stenosis—which is potentially important at an earlier stage after grafting—and the complex flow structure induced by the bypass graft are investigated. Seven geometric models, including symmetric and asymmetric stenoses in the host artery, and two major aspects of the bypass system, namely, the effects of area reduction and stenosis asymmetry, are considered. By analyzing the flow characteristics in these configurations, it is found that (1) substantial area reduction leads to flow recirculation in both upstream and downstream of the stenosis and in the host artery near the toe, while diminishes the recirculation zone in the bypass graft near the bifurcation junction, (2) the asymmetry and position of the stenosis can affect the location and size of these recirculation zones, and (3) the curvature of the bypass graft can modify the fluid flow structure in the entire bypass system.

1.
Archie
,
J. P.
, 1994, “
Femoropopliteal Bypass With Either Adequate Ipsilateral Reversed Saphenous Vein or Obligatory Polytetraflorethylene
,”
Ann. Vasc. Surg.
0890-5096,
8
(
5
), pp.
475
484
.
2.
Taylor
,
R. S.
,
Loh
,
A.
,
Mcfarland
,
R. J.
,
Cox
,
M.
, and
Chester
,
J. F.
, 1992, “
Improved Techniques for PTFE Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches
,”
Br. J. Surg.
0007-1323,
79
, pp.
348
354
.
3.
Clowes
,
A. W.
, 1993, “
Intimal Hyperplasia and Graft Failure
,”
Cardiovasc. Pathol.
1054-8807,
2
, pp.
179S
186S
.
4.
Bassiouny
,
H. S.
,
White
,
S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
, 1992, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
10
, pp.
708
717
.
5.
Sottiurai
,
V. S.
,
Yao
,
J. S. T
,
Flinn
,
W. R.
, and
Batson
,
R. C.
, 1983, “
Intimal Hyperplasia and Neointima: An Ultrastructural Analysis of Thrombosed Grafts in Humans
,”
Surgery (St. Louis)
0039-6060,
93
(
6
), pp.
809
817
.
6.
Ku
,
D. N.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Localization and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
0276-5047,
5
, pp.
292
302
.
7.
Ojha
,
M.
, 1993, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1377
1388
.
8.
Ojha
,
M.
, 1994, “
Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia
,”
Circ. Res.
0009-7330,
74
(
6
), pp.
1227
1231
.
9.
Arora
,
S.
,
Meier
,
G. H.
,
Pedersen
,
H.
,
Brophy
,
C.
,
Lacey
,
K.
, and
Gusberg
,
R. J.
, 1995, “
Non-Invasive Impedance Analysis: A New Non-Invasive Test for Graft Surveillance
,”
Cardiovasc. Surg.
0967-2109,
3
(
6
), pp.
659
664
.
10.
Walpoth
,
B. H.
,
Bosshard
,
A.
,
Genyk
,
I
,
Kipfer
,
B.
,
Berdat
,
P. A.
,
Hess
,
O. M.
,
Althaus
,
U.
, and
Carrel
,
T. P.
, 1998, “
Transit-Time Flow Measurement for Detection of Early Graft Failure During Myocardial Revascularization
,”
Ann. Thorac. Surg.
0003-4975,
66
, pp.
1097
1100
.
11.
Patel
,
U.
,
Khaw
,
K. K.
, and
Hughes
,
N. C.
, 2003, “
Doppler Ultrasound for Detection of Renal Transplant Artery Stenosis—Threshold Peak Systolic Velocity Needs to be Higher in a Low-Risk or Surveillance Population
,”
Clin. Radiol.
0009-9260,
58
, pp.
772
777
.
12.
Cole
,
J. S.
,
Watterson
,
J. K.
, and
O’Reilly
,
M. J. G.
, 2002, “
Numerical Investigation of the Haemodynamics at a Patched Arterial Bypass Anastomosis
,”
Med. Eng. Phys.
1350-4533,
24
, pp.
393
401
.
13.
Leuprecht
,
A.
,
Perktold
,
K.
,
Prosi
,
M.
,
Berk
,
T.
,
Trubel
,
W.
, and
Schima
,
H.
, 2002, “
Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts
,”
J. Biomech.
0021-9290,
35
, pp.
225
236
.
14.
Ku
,
J. P.
,
Draney
,
M. T.
,
Arko
,
F. R.
,
Lee
,
W. A.
,
Chan
,
F. P.
,
Pelc
,
N. J.
,
Zarins
,
C. K.
, and
Taylor
,
C. A.
, 2002, “
In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
743
752
.
15.
Bertolotti
,
C.
, and
Deplano
,
V.
, 2000, “
Three-Dimensional Simulations of Flow Through a Stenosed Coronary Bypass
,”
J. Biomech.
0021-9290,
33
, pp.
1011
1022
.
16.
Perktold
,
K.
,
Tatzl
,
H.
, and
Rappitsch
,
G.
, 1994, “
Flow Dynamics Effect of the Anastomotic Angle: A Numerical Study of Pulsatile Flow in Vascular Graft Anastomoses Models
,”
Technol. Health Care
0928-7329,
1
, pp.
197
207
.
17.
Kute
,
S. M.
, and
Vorp
,
D. A.
, 2001, “
The Effect of Proximal Artery Flow on the Hemodynamics at the Distal Anastomosis of a Vascular Bypass Graft: Computational Study
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
277
283
.
18.
Lee
,
D.
,
Su
,
C. M.
, and
Liang
,
H. Y.
, 2001, “
A Numerical Simulation of Steady Flow Fields in a Bypass Tube
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1407
1416
.
19.
Moore
,
J. A.
,
Steinman
,
D. A.
,
Prakash
,
S.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 1999, “
A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
265
272
.
20.
Papaharilaou
,
Y.
Doorly
,
D. J.
,
Sherwi
n
S. J.
,
Peiro
,
J.
,
Griffith
,
C.
,
Cheshire
,
N.
,
Zervas
,
V.
,
Anderson
,
J.
,
Sanghera
,
B.
,
Watkins
,
N.
, and
Caro
,
C. G.
, 2002, “
Combined MR Imaging and Numerical Simulation of Flow in Realistic Arterial Bypass Graft Models
,”
Biorheology
0006-355X,
39
, pp.
525
531
.
21.
Sherwin
,
S. J.
,
Shah
,
O.
,
Doorly
,
D. J.
,
Peiro
,
J.
,
Papaharilaou
,
Y.
,
Watkins
,
N.
,
Caro
,
C. G.
, and
Dumoulin
,
C. L.
, 2000, “
The Influence of Out-of-Plane Geometry on the Flow Within a Distal End-to-Side Anastomosis
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
86
95
.
22.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Archie
,
J. P.
, 1995, “
Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis
,”
J. Biomech.
0021-9290,
29
(
12
), pp.
1605
1614
.
23.
Huang
,
H.
,
Modi
,
V. J.
, and
Seymour
,
B. R.
, 1995, “
Fluid Mechanics of Stenosed Arteries
,”
Int. J. Eng. Sci.
0020-7225,
33
(
6
), pp.
815
828
.
24.
Lee
,
D.
, and
Chiu
,
J. J.
, 1992, “
Computation of Physiological Bifurcation Flow Using a Patched Grid
,”
Comput. Fluids
0045-7930,
21
, pp.
519
535
.
25.
Lee
,
D.
, and
Chiu
,
J. J.
, 1992, “
Covariant Velocity Based Calculation Procedure With Nonstaggered Grid for Computation of Pulsatile Flows
,”
Numer. Heat Transfer, Part B
1040-7790,
21
, pp.
269
286
.
26.
Lee
,
D.
, and
Chiu
,
J. J.
, 1996, “
Intimal Thickening Under Shear in a Carotid Bifurcation—A Numerical Study
,”
J. Biomech.
0021-9290,
29
(
1
), pp.
1
11
.
27.
Chiu
,
J. J.
, 1992, “
Computation of Three-Dimensional Branching Flows Using a Covariant Velocity Based Calculation Procedure and Zonal Grid Methods
,” Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan.
28.
Shyy
,
W.
,
Thakur
,
S.
, and
Wright
,
J.
, 2002, “
Second-Order Upwind and Central Difference Schemes for Recirculating Flow Computation
,”
AIAA J.
0001-1452,
30
, pp.
923
932
.
29.
Shyy
,
W.
, 1994 (revised printing 1997),
Computational Modeling for Fluid Flow and Interfacial Transport
,
Elsevier
, Amsterdam, The Netherlands.
30.
Ojha
,
M.
,
Ethier
,
C. R.
,
Johnston
,
K. W.
, and
Cobbold
,
R. S. C.
, 1990, “
Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model
,”
J. Vasc. Surg.
0741-5214,
12
, pp.
747
753
.
31.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
32.
Kohler
,
T. R.
,
Kirkman
,
T. R.
,
Kraiss
,
L. W.
,
Zierler
,
B. K.
, and
Clowes
,
A. W.
, 1991, “
Increased Blood Flow Inhibits Neointimal Hyperplasia in Endo-Thelialized Vascular Grafts
,”
Circ. Res.
0009-7330,
69
, pp.
1557
1565
.
You do not currently have access to this content.