Damage accumulation plays a key role in weakening bones prior to complete fracture and in stimulating bone remodeling. The goal of this study was to characterize the degradation in the mechanical properties of cortical bone following a compressive overload. Longitudinally oriented, low-aspect ratio specimens (n=24) of bovine cortical bone were mechanically tested using an overload-hold-reload protocol. No modulus reductions greater than 5% were observed following overload magnitudes less than 0.73% strain. For each specimen, changes in strength and Poisson’s ratio were greater (p=0.02) than that in modulus by 10.8- and 26.6-fold, respectively, indicating that, for the specimen configuration used in this study, longitudinal elastic modulus is one of the least sensitive properties to a compressive overload. Residual strains were also proportionately greater by 6.4-fold (p=0.01) in the transverse than axial direction. These results suggest that efforts to relate microcrack density and morphology to changes in compressive mechanical properties of cortical bone may benefit from considering alternative parameters to modulus reductions.

1.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage—I. Residual Strength and Stiffness
,”
J. Biomech.
0021-9290,
10
(
5‐6
), pp.
325
337
.
2.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Sedman
,
A. J.
, 1994, “
An Examination of the Micromechanics of Failure of Bone and Antler by Acoustic Emission Tests and Laser Scanning Confocal Microscopy
,”
Med. Eng. Phys.
1350-4533,
16
(
3
), pp.
203
212
.
3.
Frost
,
H. M.
, 1960, “
Presence of Microscopic Cracks In Vivo in Bone
,”
Bull Henry Ford Hospital
,
8
, pp.
27
35
.
4.
Norman
,
T. L.
, and
Wang
,
Z.
, 1997, “
Microdamage of Human Cortical Bone: Incidence and Morphology in Long Bones
,”
Bone (N.Y.)
8756-3282,
20
(
4
), pp.
375
379
.
5.
Schaffler
,
M. B.
,
Choi
,
K.
, and
Milgrom
,
C.
, 1995, “
Aging and Matrix Microdamage Accumulation in Human Compact Bone
,”
Bone (N.Y.)
8756-3282,
17
(
6
), pp.
521
525
.
6.
Heaney
,
R. P.
, 1993, “
Is There a Role for Bone Quality in Fragility Fractures?
,”
Calcif. Tissue Int.
0171-967X,
53
, Suppl. 1, pp.
S3
S5
;
Heaney
,
R. P.
, 1993, “
Is There a Role for Bone Quality in Fragility Fractures?
,”
Calcif. Tissue Int.
0171-967X,
53
, discussion pp.
S5
S6
.
7.
Mashiba
,
T.
,
Hirano
,
T.
,
Turner
,
C. H.
,
Forwood
,
M. R.
,
Johnston
,
C. C.
, and
Burr
,
D. B.
, 2000, “
Suppressed Bone Turnover by Bisphosphonates Increases Microdamage Accumulation and Reduces Some Biomechanical Properties in Dog Rib
,”
J. Bone Miner. Res.
0884-0431,
15
(
4
), pp.
613
620
.
8.
Fischer
,
R. A.
,
Arms
,
S. W.
,
Pope
,
M. H.
, and
Seligson
,
D.
, 1986, “
Analysis of the Effect of Using two Different Strain Rates on the Acoustic Emission in Bone
,”
J. Biomech.
0021-9290,
19
(
2
), pp.
119
127
.
9.
Courtney
,
A. C.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1996, “
Age-Related Differences in Post-Yield Damage in Human Cortical Bone. Experiment and Model
,”
J. Biomech.
0021-9290,
29
(
11
), pp.
1463
1471
.
10.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
, 1996, “
The Accumulation of Fatigue Microdamage in Human Cortical Bone of two Different Ages in Vitro
,”
Clin. Biochem.
0009-9120,
11
, pp.
363
375
.
11.
Zioupos
,
P.
,
Wang
,
X. T.
, and
Currey
,
J. D.
, 1996, “
Experimental and Theoretical Quantification of the Development of Damage in Fatigue Tests of Bone and Antler
,”
J. Biomech.
0021-9290,
29
, pp.
989
1002
.
12.
Zioupos
,
P.
, and
Casinos
,
A.
, 1998, “
Cumulative Damage and the Response of Human Bone in Two-Step Loading Fatigue
,”
J. Biomech.
0021-9290,
31
(
9
), pp.
825
833
.
13.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
, 1996, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
0021-9290,
29
(
1
), pp.
69
79
.
14.
Fleck
,
C.
, and
Eifler
,
D.
, 2003, “
Deformation Behaviour and Damage Accumulation of Cortical Bone Specimens From the Equine Tibia Under Cyclic Loading
,”
J. Biomech.
0021-9290,
36
(
2
), pp.
179
189
.
15.
Fondrk
,
M. T.
,
Bahniuk
,
E. H.
, and
Davy
,
D. T.
, 1999, “
A Damage Model for Nonlinear Tensile Behavior of Cortical Bone
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
533
541
.
16.
Akkus
,
O.
,
Knott
,
D. F.
,
Jepsen
,
K. J.
,
Davy
,
D. T.
, and
Rimnac
,
C. M.
, 2003, “
Relationship Between Damage Accumulation and Mechanical Property Degradation in Cortical Bone: Microcrack Orientation is Important
,”
J. Biomed. Mater. Res.
0021-9304,
65A
(
4
), pp.
482
488
.
17.
Schaffler
,
M. B.
,
Radin
,
E. L.
, and
Burr
,
D. B.
, 1990, “
Long-Term Fatigue Behavior of Compact Bone at low Strain Magnitude and Rate
,”
Bone (N.Y.)
8756-3282,
11
(
5
), pp.
321
326
.
18.
Jepsen
,
K. J.
, and
Davy
,
D. T.
, 1997, “
Comparison of Damage Accumulation Measures in Human Cortical Bone
,”
J. Biomech.
0021-9290,
30
(
9
), pp.
891
894
.
19.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Hasan
,
M. S.
, and
Pidaparti
,
R.
, 1998, “
Does Microdamage Accumulation Affect the Mechanical Properties of Bone?
,”
J. Biomech.
0021-9290,
31
(
4
), pp.
337
345
.
20.
Danova
,
N. A.
,
Colopy
,
S. A.
,
Radtke
,
C. L.
,
Kalscheur
,
V. L.
,
Markel
,
M. D.
,
Vanderby
,
R.
,
McCabe
,
R. P.
,
Escarcega
,
A. J.
, and
Muir
,
P.
, 2003, “
Degradation of Bone Structural Properties by Accumulation and Coalescence of Microcracks
,”
Bone (N.Y.)
8756-3282,
33
(
2
), pp.
197
205
.
21.
Hoshaw
,
S. J.
,
Cody
,
D. D.
,
Saad
,
A. M.
, and
Fyhrie
,
D. P.
, 1997, “
Decrease in Canine Proximal Femoral Ultimate Strength and Stiffness due to Fatigue Damage
,”
J. Biomech.
0021-9290,
30
(
4
), pp.
323
329
.
22.
Forwood
,
M. R.
, and
Parker
,
A. W.
, 1989, “
Microdamage in Response to Repetitive Torsional Loading in the Rat Tibia
,”
Calcif. Tissue Int.
0171-967X,
45
(
1
), pp.
47
53
.
23.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
, 1996, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone (N.Y.)
8756-3282,
18
(
5
), pp.
405
410
.
24.
Lanyon
,
L. E.
,
Hampson
,
W. G.
,
Goodship
,
A. E.
, and
Shah
,
J. S.
, 1975, “
Bone Deformation Recorded In Vivo From Strain Gauges Attached to the Human Tibial Shaft
,”
Acta Orthop. Scand.
0001-6470,
46
(
2
), pp.
256
268
.
25.
Biewener
,
A. A.
, 1991, “
Musculoskeletal Design in Relation to Body Size
,”
J. Biomech.
0021-9290,
1
, pp.
19
29
.
26.
Gray
,
R. J.
, and
Korbacher
,
G. K.
, 1974, “
Compressive Fatique Behaviour of Bovine Compact Bone
,”
J. Biomech.
0021-9290,
7
(
3
), pp.
287
292
.
27.
Caler
,
W. E.
, and
Carter
,
D. R.
, 1989, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
0021-9290,
22
, pp.
625
635
.
28.
O’Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
, 2003, “
Microcrack Accumulation at Different Intervals During Fatigue Testing of Compact Bone
,”
J. Biomech.
0021-9290,
36
, pp.
973
980
.
29.
Carter
,
D. R.
, and
Caler
,
W. E.
, 1983, “
Cycle-Dependent and Time-Dependent Bone Fracture With Repeated Loading
,”
J. Biomech. Eng.
0148-0731,
105
(
2
), pp.
166
170
.
30.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
, 1981, “
Fatigue Behavior of Adult Cortical Bone: The Influence of Mean Strain and Strain Range
,”
Acta Orthop. Scand.
0001-6470,
52
(
5
), pp.
481
490
.
31.
Reilly
,
G. C.
, and
Currey
,
J. D.
, 2000, “
The Effects of Damage and Microcracking on the Impact Strength of Bone
,”
J. Biomech.
0021-9290,
33
, pp.
337
343
.
32.
Pidaparti
,
R. M.
, and
Vogt
,
A.
, 2002, “
Experimental Investigation of Poisson’s Ratio as a Damage Parameter for Bone Fatigue
,”
J. Biomed. Mater. Res.
0021-9304,
59
(
2
), pp.
282
287
.
33.
Fondrk
,
M. T.
,
Bahniuk
,
E. H.
, and
Davy
,
D. T.
, 1999, “
Inelastic Strain Accumulation in Cortical Bone During Rapid Transient Tensile Loading
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
616
621
.
34.
Wright
,
T. M.
, and
Hayes
,
W. C.
, 1979, “
Strain Gage Application on Compact Bone
,”
J. Biomech.
0021-9290,
12
(
6
), pp.
471
475
.
35.
Mather
,
B. S.
, 1967, “
The Symmetry of the Mechanical Properties of the Human Femur
,”
J. Surg. Res.
0022-4804,
7
(
5
), pp.
222
225
.
36.
Battraw
,
G. A.
,
Miera
,
V.
,
Anderson
,
P. L.
, and
Szivek
,
J. A.
, 1996, “
Bilateral Symmetry of Biomechanical Properties in Rat Femora
,”
J. Biomed. Mater. Res.
0021-9304,
32
(
2
), pp.
285
288
.
37.
Margolis
,
D. S.
,
Lien
,
Y. H.
,
Lai
,
L. W.
, and
Szivek
,
J. A.
, 2004, “
Bilateral Symmetry of Biomechanical Properties in Mouse Femora
,”
Med. Eng. Phys.
1350-4533,
26
(
4
), pp.
349
353
.
38.
Sedlacek
,
R. C.
,
O’Connor
,
D. O.
,
Lozynsky
,
A. J.
, and
Harris
,
W. H.
, 1997, “
Assessment of the Symmetry of Bone Strains in the Proximal Femoral Medial Cortex Under Load in Bilateral Pairs of Cadaver Femurs
,”
J. Arthroplasty
0883-5403,
12
(
6
), pp.
689
694
.
39.
McElhaney
,
J. H.
, 1966, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
0021-8987,
21
(
4
), pp.
1231
1236
.
40.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
, 1974, “
The Elastic Modulus for Bone
,”
J. Biomech.
0021-9290,
7
, pp.
271
275
.
41.
Ko
,
R.
, 1953, “
The Tension Test Upon the Compact Substance of Long Bones of Human Extremities
,”
Journal of the Kyoto Prefectural Medical University
,
53
, pp.
503
525
.
42.
Yokoo
,
S.
, 1952, “
The Compression Test Upon the Diaphysis and the Compact Substance of the Long Bones of Human Extremities
,”
Journal of the Kyoto Prefectural Medical University
,
51
, pp.
291
313
.
43.
Catanese
III,
J. C.
,
Iverson
,
E. P.
,
Ng
,
R. K.
, and
Keaveny
,
T. M.
, 1999, “
Heterogeneity of the Mechanical Properties of Demineralized Bone
,”
J. Biomech.
0021-9290,
32
, pp.
1365
1369
.
44.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
, pp.
393
405
.
45.
Krajcinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier Science B. V.
, New York.
46.
Taylor
,
D.
,
Casolari
,
E.
, and
Bignardi
,
C.
, 2004, “
Predicting Stress Fractures Using a Probabilistic Model of Damage, Repair and Adaptation
,”
J. Orthop. Res.
0736-0266,
22
(
3
), pp.
487
494
.
47.
Taylor
,
D.
, and
Kuiper
,
J. H.
, 2001, “
The Prediction of Stress Fractures Using a ‘Stressed Volume’ Concept
,”
J. Orthop. Res.
0736-0266,
19
(
5
), pp.
919
926
.
48.
Chamay
,
A.
, 1970, “
Mechanical and Morphological Aspects of Experimental Overload and Fatigue in Bone
,”
J. Biomech.
0021-9290,
3
(
3
), pp.
263
270
.
49.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1974, “
Review Article. The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
5
), pp.
1001
1022
.
50.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage II: A Microscopic Examination
,”
Clin. Orthop. Relat. Res.
0009-921X,
127
, pp.
265
274
.
51.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Hetergeneous Materials
,
Elsevier
, Amsterdam.
52.
Fyhrie
,
D. P.
, and
Schaffler
,
M. B.
, 1994, “
Failure Mechanisms in Human Vertebral Cancellous Bone
,”
Bone (N.Y.)
8756-3282,
15
(
1
), pp.
105
109
.
53.
Wachtel
,
E. F.
, and
Keaveny
,
T. M.
, 1997, “
Dependence of Trabecular Damage on Mechanical Strain
,”
J. Orthop. Res.
0736-0266,
15
, pp.
781
787
.
54.
Fazzalari
,
N. L.
,
Forwood
,
M. R.
,
Smith
,
K.
,
Manthey
,
B. A.
, and
Herreen
,
P.
, 1998, “
Assessment of Cancellous Bone Quality in Severe Osteoarthrosis: Bone Mineral Density, Mechanics, and Microdamage
,”
Bone (N.Y.)
8756-3282,
22
(
4
), pp.
381
388
.
55.
Fyhrie
,
D. P.
,
Hoshaw
,
S. J.
,
Hamid
,
M. S.
, and
Hou
,
F. J.
, 2000, “
Shear Stress Distribution in the Trabeculae of Human Vertebral Bone
,”
Ann. Biomed. Eng.
0090-6964,
28
(
10
), pp.
1194
1199
.
56.
Arthur Moore
,
T. L.
, and
Gibson
,
L. J.
, 2002, “
Microdamage Accumulation in Bovine Trabecular Bone in Uniaxial Compression
,”
J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
63
71
.
57.
Yeni
,
Y. N.
,
Hou
,
F. J.
,
Ciarelli
,
T.
,
Vashishth
,
D.
, and
Fyhrie
,
D. P.
, 2003, “
Trabecular Shear Stresses Predict in Vivo Linear Microcrack Density but not Diffuse Damage in Human Vertebral Cancellous Bone
,”
Ann. Biomed. Eng.
0090-6964,
31
(
6
), pp.
726
732
.
You do not currently have access to this content.