Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently- developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm’s global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms—a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.

1.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 1999, “
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions
,”
Comp. Meth. Biomech. Biomed. Eng.
,
2
, pp.
201
231
.
2.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
381
390
.
3.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
4.
Neptune
,
R. R.
, 1999, “
Optimization Algorithm Performance in Determining Optimal Controls in Human Movement Analyses
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
249
252
.
5.
Soest
,
A. J.
and
Casius
,
L. J. R.
, 2003, “
The Merits of a Parallel Genetic Algorithm in Solving Hard Optimization Problems
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
141
146
.
6.
Buchanan
,
T. S.
, and
Shreeve
,
D. A.
, 1996, “
An Evaluation of Optimization Techniques for the Prediction of Muscle Activation Patterns During Isometric Tasks
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
565
574
.
7.
Crowninshield
,
R. D.
, and
Brand
,
R. D.
, 1981, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
0021-9290,
14
, pp.
793
801
.
8.
Glitsch
,
U.
, and
Baumann
,
W.
, 1997, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
0021-9290,
11
, pp.
1123
1131
.
9.
Kaufman
,
K. R.
,
An
,
K.-N.
,
Litchy
,
W. J.
, and
Chao
,
E. Y. S.
, 1991, “
Physiological Prediction of Muscle Forces—I. Theoretical Formulation
,”
Neuroscience
0306-4522,
40
, pp.
781
792
.
10.
Lu
,
T.-W.
and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation from Skin Marker Coordinates using Global Optimisation with Joint Constraints
,”
J. Biomech.
0021-9290,
32
, pp.
129
124
.
11.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
, 1997, “
Muscle Coordination of Maximum-Speed Pedaling
,”
J. Biomech.
0021-9290,
30
, pp.
595
602
.
12.
Prilutsky
,
B. I.
,
Herzog
,
W.
, and
Allinger
,
T. L.
, 1997, “
Forces of Individual Cat Ankle Extensor Muscles During Locomotion Predicted Using Static Optimization
,”
J. Biomech.
0021-9290,
30
, pp.
1025
1033
.
13.
Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
B. M.
, 1994, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: An Optimization Approach
,”
J. Biomech.
0021-9290,
12
, pp.
1477
1488
.
14.
Mommerstag
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
, 1996, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical–Experimental Approach
,”
J. Biomech.
0021-9290,
29
, pp.
151
160
.
15.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
, 2004, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
0021-9290
38
, pp.
621
626
.
16.
Sommer
,
H. J.
, III
, and
Miller
,
N. R.
, 1980, “
Technique For Kinematic Modeling of Anatomical Joints
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
311
317
.
17.
Vaughan
,
C. L.
,
Andrews
,
J. G.
, and
Hay
,
J. G.
, 1982, “
Selection of Body Segment Parameters by Optimization Methods
,”
J. Biomech. Eng.
0148-0731,
104
, pp.
38
44
.
18.
Kaptein
,
B. L.
,
Valstar
,
E. R.
,
Stoel
,
B. C.
,
Rozing
,
P. M.
, and
Reiber
,
J. H. C.
, 2003, “
A New Model-Based RSA Method Validated Using CAD Models and Models from Reversed Engineering
,”
J. Biomech.
0021-9290,
36
, pp.
873
882
.
19.
Mahfouz
,
M. R.
,
Hoff
,
W. A.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
, 2003, “
A Robust Method for Registration of Three-Dimensional Knee Implant Models to Two-Dimensional Fluoroscopy Images
,”
IEEE Trans. Med. Imaging
0278-0062,
22
, pp.
1561
1574
.
20.
You
,
B.-M.
,
Siy
,
P.
,
Anderst
,
W.
, and
Tashman
,
S.
, 2001, “
In Vivo Measurement of 3-D Skeletal Kinematics from Sequences of Biplane Radiographs: Application to Knee Kinematics
,”
IEEE Trans. Med. Imaging
0278-0062,
20
, pp.
514
525
.
21.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
, 1986,
Practical Optimization
,
Academic Press
, New York.
22.
Wilcox
,
K.
and
Wakayama
,
S.
, 2003,
Simultaneous Optimization of a Multiple-Aircraft Family
,
J. Aircr.
0021-8669,
40
, pp.
616
622
.
23.
Kennedy
J.
, and
Eberhart
R. C.
, 1995, “
Particle Swarm Optimization
,”
Proceedings of the IEEE International Conference on Neural Networks
,
Perth, Australia
Vol.
4
, pp.
1942
1948
.
24.
Groenwold
,
A. A.
, and
Fourie
,
P. C.
, 2002, “
The Particle Swarm Optimization in Size and Shape Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
259
267
.
25.
Shi
,
Y.
, and
Eberhart
,
R. C.
, 1998, “
Parameter Selection in Particle Swarm Optimization
,”
Lect. Notes Comput. Sc. 1447
,
Springer-Verlag
, Berlin, pp.
591
600
.
26.
Fourie
,
P. C.
and
Groenwold
,
A. A.
, 2001, “
The Particle Swarm Algorithm in Topology Optimization
,”
Proceedings of the 4th World Congress of Struct. Multidiscip. Opt.
,
Dalian, China
pp.
52
53
.
27.
Schutte
,
J. F.
, 2001, “
Particle Swarms in Sizing and Global Optimization
,” Master’s thesis, University of Pretoria, South Africa.
28.
Schutte
,
J. F.
, and
Groenwold
,
A. A.
, 2003, “
Sizing Design of Truss Structures Using Particle Swarms
,”
Struct. Multidiscip. Optim.
1615-147X,
25
, pp.
261
269
.
29.
Schutte
,
J. F.
, and
Groenwold
,
A. A.
, 2004, “
A Study of Global Optimization Using Particle Swarms
,”
J. Global Opt.
(in press).
30.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley Interscience Series in Systems and Optimization
,
Wiley
, New York, Chap. 4.
31.
Deb
,
K.
, and
Agrawal
,
R. B.
, 1995, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
0891-2513,
9
, pp.
115
148
.
32.
Deb
,
K.
, and
Goyal
,
M.
, 1996, “
A Combined Genetic Adaptive Search (GeneAS) for Engineering Design
,”
Comput. Sci. Inform.
0254-7813,
26
, pp.
30
45
.
33.
Schutte
,
J. F.
,
Reinbolt
,
J. A.
,
Fregly
,
B. J.
,
Haftka
,
R. T.
, and
George
,
A. D.
, 2004, “
Parallel Global Optimization with the Particle Swarm Algorithm
,”
Int. J. Numer. Methods Eng.
0029-5981
61
, pp.
2296
2315
.
34.
Koh
,
B. I.
,
Reinbolt
,
J. A.
,
Fregly
,
B. J.
, and
George
,
A. D.
, 2004, “
Evaluation of Parallel Decomposition Methods for Biomechanical Optimizations
,”
Comp. Meth. Biomech. Biomed. Eng.
7
, pp.
215
225
.
35.
Gropp
,
W.
, and
Lusk
,
E.
, 1996, “
User’s Guide for MPICH, “A Portable Implementation of MPI
,”
Argonne National Laboratory, Mathematics and Computer Science Division
, http://www.mcs.anl.gov/mpi/mpiuserguide/paper.htmlhttp://www.mcs.anl.gov/mpi/mpiuserguide/paper.html.
36.
Gropp
,
W.
,
Lusk
,
E.
,
Doss
,
N.
, and
Skjellum
,
A.
, 1996. “
A High Performance, Portable Implementation of the MPI Message Passing Interface Standard
,”
Parallel Comput.
0167-8191,
22
, pp.
789
828
.
37.
Schaffer
,
J. D.
,
Caruana
,
R. A.
,
Eshelman
,
L. J.
, and
Das
,
R.
, 1989, “
A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimizing
,”
Proceedings of the 3rd International Conference on Genetic Algebra
, edited by
J. D.
,
David
,
Morgan Kaufmann Publishers
, San Mateo, California, pp.
51
60
.
38.
Corana
,
A.
,
Marchesi
,
M.
,
Martini
,
C.
, and
Ridella
,
S.
, 1987, “
Minimizing Multimodal Functions of Continuous Variables with the “Simulated Annealing” Algorithm
,”
ACM Trans. Math. Softw.
0098-3500,
13
, pp.
262
280
.
39.
Chèze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
1995, “
A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data
,”
J. Biomech.
0021-9290,
28
, pp.
879
884
.
40.
Lu
,
T.-W.
and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation from Skin Marker Co-ordinates using Global Optimization with Joint Constraints
,”
J. Biomech.
0021-9290,
32
, pp.
129
124
.
41.
Reference Manual for VisualDOC C∕C++ API
, 2001,
Vanderplaats Research and Development, Inc.
, Colorado Springs, CO.
42.
Boeringer
,
D. W.
, and
Werner
,
D. H.
, 2004, “
Particle Swarm Optimization Versus Genetic Algorithms For Phased Array Synthesis
,”
IEEE Trans. Antennas Propag.
0018-926X,
52
, pp.
771
779
.
43.
Brandstatter
,
B.
, and
Baumgartner
,
U.
, 2002, “
Particle Swarm Optimization—Mass-Spring System Analogon
,”
IEEE Trans. Magn.
0018-9464,
38
, pp.
997
1000
.
44.
Cockshott
,
A. R.
, and
Hartman
,
B. E.
, 2001, “
Improving the Fermentation Medium for Echinocandin B Production Part II: Particle Swarm Optimization
,”
Process Biochem. (Oxford, U.K.)
1359-5113,
36
, pp.
661
669
.
45.
Costa
,
E. F. J.
,
Lage
,
P. L. C.
, and
Biscaia
,
E. C.
, Jr.
, 2003, “
On the Numerical Solution and Optimization of Sstyrene Polymerization in Tubular Reactors
,”
Comput. Chem. Eng.
0098-1354,
27
, pp.
1591
1604
.
46.
Lu
,
W. Z.
,
Fan
,
H.-Y.
, and
Lo
,
S. M.
, 2003, “
Application of Evolutionary Neural Network Method in Predicting Pollutant Levels in Downtown Area of Hong Kong
,”
Neurocomputing
0925-2312,
51
, pp.
387
400
.
47.
Pidaparti
,
R. M.
, and
Jayanti
,
S.
, 2003, “
Corrosion Fatigue Through Particle Swarm Optimization
,”
AIAA J.
0001-1452,
41
, pp.
1167
1171
.
48.
Tandon
,
V.
,
El-Mounayri
,
H.
, and
Kishawy
,
H.
, 2002, “
NC End Milling Optimization Using Evolutionary Computation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
595
605
.
49.
Abido
,
M. A.
, 2002, “
Optimal Power Flow Using Particle Swarm Optimization
,”
Int. J. Electr. Power Energy Syst.
0142-0615,
24
, pp.
563
571
.
50.
Abido
,
M. A.
, 2002, “
Optimal Design of Power System Stabilizers using Particle Swarm Optimization
,”
IEEE Trans. Energy Convers.
0885-8969,
17
, pp.
406
413
.
51.
Gies
,
D.
, and
Rahmat-Samii
,
Y.
, 2003, “
Particle Swarm Optimization for Reconfigurable Phase-Differentiated Array Design
,”
Microwave Opt. Technol. Lett.
0895-2477,
38
, pp.
168
175
.
52.
Leite
,
J. P. B.
and
Topping
,
B. H. V.
, 1999, “
Parallel Simulated Annealing for Structural Optimization
,”
Compos. Struct.
0263-8223,
73
, pp.
545
564
.
53.
Higginson
,
J. S.
,
Neptune
,
R. R.
, and
Anderson
,
F. C.
, 2004, “
Simulated Parallel Annealing Within a Neighborhood for Optimization of Biomechanical Systems
,”
J. Biomech.
0021-9290 (in press).
54.
Carlisle
,
A.
, and
Dozier
,
G.
, 2001, “
An Off-the-Shelf PSO
,”
Proceedings of the Workshop on Particle Swarm Optimization
, Indianapolis, IN.
55.
Parsopoulos
,
K. E.
, and
Vrahatis
,
M. N.
, 2002, “
Recent Approaches to Global Optimization Problems through Particle Swarm Optimization
.”
Nat. Comp.
,
1
, pp.
235
306
.
56.
Trelea
,
I. C.
, 2002, “
The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection
,”
Inform. Process. Lett.
,
85
, pp.
317
325
.
You do not currently have access to this content.